Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 347: 113900, 2022 01.
Article in English | MEDLINE | ID: mdl-34695425

ABSTRACT

During the pathogenesis of Parkinson's disease (PD), aggregation of alpha-synuclein (αSyn) induces a vicious cycle of cellular impairments that lead to neurodegeneration. Consequently, removing toxic αSyn aggregates constitutes a plausible strategy against PD. In this work, we tested whether stimulating the autolysosomal degradation of αSyn aggregates through the Ras-related in brain 7 (Rab7) pathway can reverse αSyn-induced cellular impairment and prevent neurodegeneration in vivo. The disease-related A53T mutant of αSyn was expressed in primary neurons and in dopaminergic neurons of the rat brain simultaneously with wild type (WT) Rab7 or the T22N mutant as negative control. The cellular integrity was quantified by morphological and biochemical analyses. In primary neurons, WT Rab7 rescued the αSyn-induced loss of neurons and neurites. Furthermore, Rab7 decreased the amount of reactive oxygen species and the amount of Triton X-100 insoluble αSyn. In rat brain, WT Rab7 reduced αSyn-induced loss of dopaminergic axon terminals in the striatum and the loss of dopaminergic dendrites in the substantia nigra pars reticulata. Further, WT Rab7 lowered αSyn pathology as quantified by phosphorylated αSyn staining. Finally, WT Rab7 attenuated αSyn-induced DNA damage in primary neurons and rat brain. In brief, Rab7 reduced αSyn-induced pathology, ameliorated αSyn-induced neuronal degeneration, oxidative stress and DNA damage. These findings indicate that Rab7 is able to disrupt the vicious cycle of cellular impairment, αSyn pathology and neurodegeneration present in PD. Stimulation of Rab7 and the autolysosomal degradation pathway could therefore constitute a beneficial strategy for PD.


Subject(s)
Dopaminergic Neurons/metabolism , alpha-Synuclein/biosynthesis , alpha-Synuclein/toxicity , rab7 GTP-Binding Proteins/biosynthesis , rab7 GTP-Binding Proteins/pharmacology , Animals , Cells, Cultured , DNA Damage/drug effects , DNA Damage/physiology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
2.
Front Neurosci ; 15: 696440, 2021.
Article in English | MEDLINE | ID: mdl-34326719

ABSTRACT

Reducing α-synuclein pathology constitutes a plausible strategy against Parkinson's disease. As we recently demonstrated, the ß-wrapin protein AS69 binds an N-terminal region in monomeric α-synuclein, interferes with fibril nucleation, and reduces α-synuclein aggregation in vitro and in a fruit fly model of α-synuclein toxicity. The aim of this study was to investigate whether AS69 also reduces α-synuclein pathology in mammalian neurons. To induce α-synuclein pathology, primary mouse neurons were exposed to pre-formed fibrils (PFF) of human α-synuclein. PFF were also injected into the striatum of A30P-α-synuclein transgenic mice. The extent of α-synuclein pathology was determined by phospho-α-synuclein staining and by Triton X-100 solubility. The degeneration of neuronal somata, dendrites, and axon terminals was determined by immunohistochemistry. AS69 and PFF were taken up by primary neurons. AS69 did not alter PFF uptake, but AS69 did reduce PFF-induced α-synuclein pathology. PFF injection into mouse striatum led to α-synuclein pathology and dystrophic neurites. Co-injection of AS69 abrogated PFF-induced pathology. AS69 also reduced the PFF-induced degeneration of dopaminergic axon terminals in the striatum and the degeneration of dopaminergic dendrites in the substantia nigra pars reticulata. AS69 reduced the activation of astroglia but not microglia in response to PFF injection. Collectively, AS69 reduced PFF-induced α-synuclein pathology and the associated neurodegeneration in primary neurons and in mouse brain. Our data therefore suggest that small proteins binding the N-terminus of α-synuclein monomers are promising strategies to modify disease progression in Parkinson's disease.

3.
Cell Rep ; 29(9): 2862-2874.e9, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31775051

ABSTRACT

Intracellular accumulation of α-synuclein (α-syn) and formation of Lewy bodies are neuropathological characteristics of Parkinson's disease (PD) and related α-synucleinopathies. Oligomerization and spreading of α-syn from neuron to neuron have been suggested as key events contributing to the progression of PD. To directly visualize and characterize α-syn oligomerization and spreading in vivo, we generated two independent conditional transgenic mouse models based on α-syn protein complementation assays using neuron-specifically expressed split Gaussia luciferase or split Venus yellow fluorescent protein (YFP). These transgenic mice allow direct assessment of the quantity and subcellular distribution of α-syn oligomers in vivo. Using these mouse models, we demonstrate an age-dependent accumulation of a specific subtype of α-syn oligomers. We provide in vivo evidence that, although α-syn is found throughout neurons, α-syn oligomerization takes place at the presynapse. Furthermore, our mouse models provide strong evidence for a transsynaptic cell-to-cell transfer of de novo generated α-syn oligomers in vivo.


Subject(s)
Neurons/metabolism , Parkinson Disease/genetics , alpha-Synuclein/metabolism , Animals , Disease Models, Animal , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...