Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 36(2): e4840, 2023 02.
Article in English | MEDLINE | ID: mdl-36196511

ABSTRACT

The objective of the current study was to assess sodium (23 Na) and quantitative proton (1 H) parameter changes in muscle tissue with magnetic resonance imaging (MRI) after eccentric exercise and in delayed-onset muscle soreness (DOMS). Fourteen participants (mean age: 25 ± 4 years) underwent 23 Na/1 H MRI of the calf muscle on a 3-T MRI system before exercise (t0), directly after eccentric exercise (t1), and 48 h postintervention (t2). In addition to tissue sodium concentration (TSC), intracellular-weighted sodium (ICwS) signal was acquired using a three-dimensional density-adapted radial projection readout with an additional inversion recovery preparation module. Phantoms containing saline solution served as references to quantify sodium concentrations. The 1 H MRI protocol consisted of a T1 -weighted turbo spin echo sequence, a T2 -weighted turbo inversion recovery, as well as water T2 mapping and water T1 mapping. Additionally, blood serum creatine kinase (CK) levels were assessed at baseline and 48 h after exercise. The TSC and ICwS of exercised muscles increased significantly from t0 to t1 and decreased significantly from t1 to t2. In the soleus muscle (SM), ICwS decreased below baseline values at t2. In the tibialis anterior muscle (TA), TSC and ICwS remained at baseline levels at each measurement point. However, high-CK participants (i.e., participants with a more than 10-fold CK increase, n = 3) displayed different behavior, with 2- to 4-fold increases in TSC values in the medial gastrocnemius muscle (MGM) at t2. 1 H water T1 relaxation times increased significantly after 48 h in the MGM and SM. 1 H water T2 relaxation times and muscle volume increased in the MGM at t2. Sodium MRI parameters and water relaxation times peaked at different points. Whereas water relaxation times were highest at t2, sodium MRI parameters had already returned to baseline values (or even below baseline values, for low-CK participants) by this point. The observed changes in ion concentrations and water relaxation time parameters could enable a better understanding of the physiological processes during DOMS and muscle regeneration. In the future, this might help to optimize training and to reduce associated sports injuries.


Subject(s)
Hydrogen , Myalgia , Humans , Young Adult , Adult , Myalgia/diagnostic imaging , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/injuries , Sodium , Protons , Water
2.
Quant Imaging Med Surg ; 12(9): 4462-4473, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36060583

ABSTRACT

Background: There is limited information about perfusion in exercise-induced muscle injuries such as delayed-onset muscle soreness (DOMS) and the effect of compression garments as a therapeutic strategy during the regeneration phase. The purpose of this prospective, explorative study was to evaluate muscle perfusion in DOMS and to assess the effect of compression garments at resting conditions and during DOMS by magnetic resonance (MR) arterial spin labeling (ASL). Methods: DOMS was induced from 03/2021 to 04/2021 using an eccentric and plyometric exercises targeting the calf muscles in 14 volunteers. A compression garment (21-22 mmHg) was worn during and for 6 h after exercise on one randomized leg. Magnetic resonance imaging (MRI) including ASL of both lower legs was performed before and directly after the exercise as well as after 6 h, and 48 h using a 3 Tesla MRI system. Perfusion analyses of the gastrocnemius muscle (GM) and the tibialis anterior muscle (TA) were performed and results were compared to baseline measurements. T2-weighted images and creatine kinase levels were acquired at baseline and after 48 h. Results: All volunteers presented a successful induction of DOMS in the GM after 48 h. Arterial muscle perfusion in the GM increased from baseline to measurements taken directly after the exercise (4.97±5.59 mL/100 g/min, P<0.001). No significant alteration in perfusion compared to baseline was observed at 6 h (P=0.16) and 48 h (P=1.0) after the induction of DOMS. Compression garments did not elicit a significant alteration in ASL parameters in the GM (P=0.65) or the TA (P=0.05) at any time point. No adverse events occurred during the study. Conclusions: After an initial exercise-associated increase in arterial muscle perfusion, a normalization of blood supply was observed at 6 and 48 h after the exercise intervention inducing DOMS. Wearing a compression garment (21-22 mmHg) during and after the induction of DOMS did not affect muscle perfusion at rest, nor did it have any significant effect on muscle perfusion during the regeneration phase. The results can help to better understand the pathophysiological properties of DOMS and may have implications for diagnostic and therapeutic strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...