Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Structure ; 30(1): 156-171.e12, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34492227

ABSTRACT

R2TP is a highly conserved chaperone complex formed by two AAA+ ATPases, RUVBL1 and RUVBL2, that associate with PIH1D1 and RPAP3 proteins. R2TP acts in promoting macromolecular complex formation. Here, we establish the principles of R2TP assembly. Three distinct RUVBL1/2-based complexes are identified: R2TP, RUVBL1/2-RPAP3 (R2T), and RUVBL1/2-PIH1D1 (R2P). Interestingly, we find that PIH1D1 does not bind to RUVBL1/RUVBL2 in R2TP and does not function as a nucleotide exchange factor; instead, RPAP3 is found to be the central subunit coordinating R2TP architecture and linking PIH1D1 and RUVBL1/2. We also report that RPAP3 contains an intrinsically disordered N-terminal domain mediating interactions with substrates whose sequences are primarily enriched for Armadillo repeat domains and other helical-type domains. Our work provides a clear and consistent model of R2TP complex structure and gives important insights into how a chaperone machine concerned with assembly of folded proteins into multisubunit complexes might work.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Apoptosis Regulatory Proteins/metabolism , Carrier Proteins/metabolism , DNA Helicases/metabolism , Multiprotein Complexes/chemistry , ATPases Associated with Diverse Cellular Activities/chemistry , Apoptosis Regulatory Proteins/chemistry , Binding Sites , Carrier Proteins/chemistry , Chromatography, Gel , DNA Helicases/chemistry , Humans , Models, Molecular , Multiprotein Complexes/metabolism , Protein Conformation , Protein Domains , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL
...