Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928832

ABSTRACT

The quality of oil is highly dependent on its free fatty acid (FFA) content, especially due to increased restrictions on renewable fuels. As a result, there has been a growing interest in free fatty acid determination methods over the last few decades. While various standard methods are currently available, such as the American Oil Chemists Society (AOCS), International Union of Pure and Applied Chemistry (IUPAC), and Japan Oil Chemists' Society (JOCS), to obtain accurate results, there is a pressing need to investigate a fast, accurate, feasible, and eco-friendly methodology for determining FFA in biological materials. This is owing to inadequate characteristics of the methods, such as solvent consumption and reproducibility, among others. This study aims to investigate FFA determination methods to identify suitable approaches and introduce a fresh perspective.

2.
ACS Omega ; 8(4): 4038-4045, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36743007

ABSTRACT

Diesel and biodiesel blends requires additives to improve fuel quality properties and engine performance. Diesel improvers are added before, during and/or after the fuel is blended. However, no accurate rapid and non-destructive analytical method is used during the fuel production that could determine the exact concentration of various types of improvers in diesel fuel. Thus, the aim of this study was to determine the concentration of several improvers in diesel matrices at the same time. Three types of diesel improvers, i.e., a cold-flow improver (CFI), a conductivity-lubricity improver (CLI), and a cetane number improver (CNI), were simultaneously determined by near-infrared (NIR) spectroscopy combined with multivariate statistical analysis and the partial least squares algorithm. The prediction models yielded high correlation coefficients (R 2) >0.99 and satisfactory values of the root mean square error of calibration as follows: CLI 4.2 (mg·kg-1), CFI 4.6 (mg·kg-1), and CNI 5.3 (mg·kg-1). The residual standard deviation of the repeatability was calculated to be around 8%. These results highlight the potential of NIR spectroscopy for use as a fast, low-cost, and efficient tool to determine the concentrations of diesel improvers. Moreover, this technique is suitable for application during refinery production, especially for the purpose of online monitoring to prevent overdoses of additives and save financial expenses.

3.
Polymers (Basel) ; 14(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36015657

ABSTRACT

Wood stock in a warehouse is a necessary precondition for reliable manufacturing. However, wood can degrade and lose the matter during storage. "Dry-matter loss (DML)" is used to quantify the degradation following the changes in mass of a wood substance. The proposed calculation of DML is based on using parallel figures. The calculated loss of spruce wood substance harvested in winter during a six-month period was 4.5%. The estimated annual loss of wood substance was 5.7%. The loss was caused by a factor with a gradually eliminated effect. The changes in the chemical composition of wood substance were not proportional to the original amount of the isolated chemical substances. Hemicelluloses and lignin suffered from the loss faster than there was a change in the DML of spruce wood. Hemicelluloses were the most unstable isolated compound, with an increased rate of change during the first four months. The number of extractives significantly decreased during two months of storage. However, there was an increase in the number of extractives after six months of storage. The loss of cellulose was similar to the DML of spruce wood during the whole time of storage. The FTIR analysis confirmed a decrease in the total crystalline index (TCI) and lateral order index (LOI) of cellulose due to the storage of roundwood.

4.
Materials (Basel) ; 14(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34639994

ABSTRACT

In this paper, the fuel properties of mixtures of diesel fuel and ethanol and diesel fuel and butanol in the ratio of 2.5% to 30% were investigated. The physicochemical properties of the blends such as the cetane number, cetane index, density, flash point, kinematic viscosity, lubricity, CFPP, and distillation characteristics were measured, and the effect on fuel properties was evaluated. These properties were compared with the current EN 590+A1 standard to evaluate the suitability of the blends for use in unmodified engines. The alcohols were found to be a suitable bio-component diesel fuel additive. For most physicochemical properties, butanol was found to have more suitable properties than ethanol when used in diesel engines. The results show that for some properties, a butanol-diesel fuel mixture can be mixed up to a ratio of 15%. Other properties would meet the standard by a suitable choice of base diesel.

5.
Materials (Basel) ; 14(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199859

ABSTRACT

This paper focuses on the evaluation of the fuel properties of Fischer-Tropsch diesel blends with conventional diesel. Incorporating this advanced fuel into conventional diesel production will enable the use of waste materials and non-food materials as resources, while contributing to a reduction in dependence on crude oil. To evaluate the suitability of using Fischer-Tropsch diesel, cetane number, cetane index, CFPP, density, flash point, heat of combustion, lubricity, viscosity, distillation curve, and fuel composition ratios using multidimensional GC × GC-TOFMS for different blends were measured. It was found that the fuel properties of the blended fuel are comparable to conventional diesel and even outperform conventional fuel in some parameters. All measurements were performed according to current standards, thus ensuring the repeatability of measurements for other research groups or the private sector.

6.
Materials (Basel) ; 14(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200359

ABSTRACT

The aim of the article is to determine the properties of fuel mixtures of Fischer-Tropsch naphtha fraction with traditional gasoline (petrol) to be able to integrate the production of advanced alternative fuel based on Fischer-Tropsch synthesis into existing fuel markets. The density, octane number, vapor pressure, cloud point, water content, sulphur content, refractive index, ASTM color, heat of combustion, and fuel composition were measured using the gas chromatography method PIONA. It was found that fuel properties of Fischer-Tropsch naphtha fraction is not much comparable to conventional gasoline (petrol) due to the high n-alkane content. This research work recommends the creation of a low-percentage mixture of 3 vol.% of FT naphtha fraction with traditional gasoline to minimize negative effects-similar to the current legislative limit of 5 vol.% of bioethanol in E5 gasoline. FT naphtha fraction as a biocomponent does not contain sulphur or polyaromatic hydrocarbons nor benzene. Waste materials can be processed by FT synthesis. Fischer-Tropsch synthesis can be considered a universal fuel-the naphtha fraction cut can be declared as a biocomponent for gasoline fuel without any further necessary catalytic upgrading.

7.
Materials (Basel) ; 14(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33671951

ABSTRACT

Biobutanol is a renewable, less polluting, and potentially viable alternative fuel to conventional gasoline. Biobutanol can be produced from same sources as bioethanol, and it has many advantages over the widespread bioethanol. This paper systematically analyzes biobutanol fuel as an alternative to bioethanol in alcohol-gasoline mixtures and the physicochemical properties. Based on the conducted analyses, it was found that biobutanol mixtures have a more suitable behavior of vapor pressure without the occurrence of azeotrope, do not form a separate phase in lower temperature, it has higher energy density, but slightly reduce the octane number and a have higher viscosity. However, in general, biobutanol has many advantageous properties that could allow its use in gasoline engines instead of the commonly used bioethanol.

8.
Materials (Basel) ; 13(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261102

ABSTRACT

This article focuses on the issue of motor oils used in the engines of non-road mobile machinery (NRMM), more specifically tractors. The primary goal of the paper is to determine the appropriate replacement interval for these oils. The physical properties of the examined samples were first determined by conventional instruments. Furthermore, the concentrations of abrasive metals, contaminants, and additive elements were measured using an optical emission spectrometer. Lastly, the content of water, fuel, and glycol and the products of oxidation, nitration, and sulfation were determined by using infrared spectrometry. The measured values were compared to the limit values. Based on the processing and evaluation of these analyses, the overall condition of the oils was assessed and subsequently the optimal exchange interval of the examined oils was determined. In addition, a risk analysis of the outage was performed. Due to the high yields of crops, farmers can lose a significant amount of product when a tractor is not functioning during the harvest period. This loss is calculated in the paper.

9.
Foods ; 9(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339333

ABSTRACT

In this study, 15 selected bottled mineral waters from chosen European countries were tested for their mineral nutrient contents. In particular, six important nutrients (Ca2+, Mg2+, Na+, K+, HCO3-, Cl-) were measured using atomic absorption spectroscopy. The content of mineral nutrients in all sampled mineral waters were compared to their expected content based on the label. Consequently, their taste was evaluated by 60 trained panelists who participated in the sensory analysis. The results from both the atomic absorption spectroscopy and sensory analysis were analyzed using the regression framework. On the basis of the results from the regression analysis, we determined to what extent the individual mineral nutrients determined the taste of the mineral water. According to the regression results, four out of six analyzed nutrients had a measurable impact on taste. These findings can help producers to provide ideal, health-improving nutrients for mineral water buyers.

SELECTION OF CITATIONS
SEARCH DETAIL
...