Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Xray Sci Technol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38943421

ABSTRACT

BACKGROUND: Typical propagation-based X-ray phase contrast imaging (PB-PCI) experiments using polyenergetic sources are tested in very ideal conditions: low-energy spectrum (mainly characteristic X-rays), small thickness and homogeneous materials considered weakly absorbing objects, large object-to-detector distance, long exposure times and non-clinical detector. OBJECTIVE: Explore PB-PCI features using boundary conditions imposed by a low power polychromatic X-ray source (X-ray spectrum without characteristic X-rays), thick and heterogenous materials and a small area imaging detector with high low-detection radiation threshold, elements commonly found in a clinical scenario. METHODS: A PB-PCI setup implemented using a microfocus X-ray source and a dental imaging detector was characterized in terms of different spectra and geometric parameters on the acquired images. Test phantoms containing fibers and homogeneous materials with close attenuation characteristics and animal bone and mixed soft tissues (bio-sample models) were analyzed. Contrast to Noise Ratio (CNR), system spatial resolution and Kerma values were obtained for all images. RESULTS: Phase contrast images showed CNR up to 15% higher than conventional contact images. Moreover, it is better seen when large magnifications (>3) and object-to-detector distances (>13 cm) were used. The influence of the spectrum was not appreciable due to the low efficiency of the detector (thin scintillator screen) at high energies. CONCLUSIONS: Despite the clinical boundary condition used in this work, regarding the X-ray spectrum, thick samples, and detection system, it was possible to acquire phase contrast images of biological samples.

2.
Heliyon ; 5(4): e01467, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31008399

ABSTRACT

A simple solution to improve the contrast between the different concrete composites in X-ray imaging (radiography and tomography) of a highly compressed composite sample of real size roller compacted concrete (RCC) specimens is presented. This is made by applying a 9.5 mm thick Copper (Cu) filter at the output window of the X ray tube in a conventional X-ray inspection equipment. Our results show that with the employed filtration, at 140 kV and 200 kV, we were able to distinguish the gravel from the other concrete composites even in a highly compacted specimen. Cement and sand grains as well as porosity were not detected mainly due to the low spatial resolution of our detector system. This suggests a further improvement by using the now available high voltage microfocus X-ray tube (>= 200 kV), a bow-tie (or through) Cu filters and a high resolution flat panel detector for phase contrast imaging on real size compacted concrete specimens.

3.
Rev Sci Instrum ; 83(11): 113702, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23206066

ABSTRACT

Several recent papers have shown the implementation of analyzer based X-ray phase contrast imaging (ABI) with conventional X-ray sources. The high flux is always a requirement to make the technique useful for bio-medical applications. Here, we present and discuss three important parameters, which need to be taken into account, when searching for the high flux ABI: anisotropic magnification, double image, and source size spread due to intrinsic dispersive diffraction by asymmetrically cut crystals. These parameters, if not well optimized, may cause important features in the acquired images which can mislead the interpretation. A few ways to minimize these effects are implemented and discussed, including some experimental results.

4.
Rev Sci Instrum ; 78(11): 113708, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18052481

ABSTRACT

An analyzer-based x-ray phase-contrast microscopy (ABM) setup combining a standard analyzer-based x-ray phase-contrast imaging (ABI) setup [nondispersive 4-crystal setup (Bonse-Hart setup)] and diffraction by asymmetrically cut crystals is presented here. An attenuation-contrast microscopy setup with conventional x-ray source and asymmetrically cut crystals is first analyzed. Edge-enhanced effects attributed to phase jumps or refraction/total external reflection on the fiber borders were detected. However, the long exposure times and the possibility to achieve high contrast microscopies by using extremely low attenuation-contrast samples motivated us to assemble the ABM setup using a synchrotron source. This setup was found to be useful for low contrast attenuation samples due to the low exposure time, high contrast, and spatial resolution found. Moreover, thanks to the combination with the nondispersive ABI setup, the diffraction-enhanced x-ray imaging algorithm could be applied.


Subject(s)
Crystallization/instrumentation , Image Enhancement/instrumentation , Lenses , Microscopy, Phase-Contrast/instrumentation , X-Ray Diffraction/instrumentation , Equipment Design , Equipment Failure Analysis , Image Enhancement/methods , Microscopy, Phase-Contrast/methods , Reproducibility of Results , Sensitivity and Specificity , X-Ray Diffraction/methods
5.
J Synchrotron Radiat ; 10(Pt 6): 421-3, 2003 Nov 01.
Article in English | MEDLINE | ID: mdl-14551441

ABSTRACT

Diffraction-enhanced images have been obtained using two silicon crystals in a non-dispersive set-up at the XRD2 beamline at the Brazilian Synchrotron Light Laboratory (LNLS). A first asymmetrically cut silicon crystal using the (333) reflection vertically expanded the monochromated beam from 1 mm to 20 mm allowing the imaging of the whole sample without movements. A symmetrically cut Si(333) second crystal was used as a Bragg analyzer. Images of biological samples including human tissue were recorded using a direct-conversion CCD detector resulting in enhancement of the contrast compared with absorption-contrast images.


Subject(s)
Cuspid/diagnostic imaging , Hysterosalpingography/methods , Radiographic Image Enhancement/instrumentation , Radiographic Image Enhancement/methods , Tuberculosis, Pulmonary/diagnostic imaging , X-Ray Diffraction/instrumentation , X-Ray Diffraction/methods , Brazil , Feasibility Studies , Humans , Lung/diagnostic imaging , Pilot Projects , Plant Leaves/anatomy & histology , Synchrotrons , Trees/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...