Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10309, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705929

ABSTRACT

Aplacophoran molluscs are shell-less and have a worm-like body which is covered by biomineralized sclerites. We investigated sclerite crystallography and the sclerite mosaic of the Solenogastres species Dorymenia sarsii, Anamenia gorgonophila, and Simrothiella margaritacea with electron-backscattered-diffraction (EBSD), laser-confocal-microscopy and FE-SEM imaging. The soft tissue of the molluscs is covered by spicule-shaped, aragonitic sclerites. These are sub-parallel to the soft body of the organism. We find, for all three species, that individual sclerites are untwinned aragonite single crystals. For individual sclerites, aragonite c-axis is parallel to the morphological, long axis of the sclerite. Aragonite a- and b-axes are perpendicular to sclerite aragonite c-axis. For the scleritomes of the investigated species we find different sclerite and aragonite crystal arrangement patterns. For the A. gorgonophila scleritome, sclerite assembly is disordered such that sclerites with their morphological, long axis (always the aragonite c-axis) are pointing in many different directions, being, more or less, tangential to cuticle surface. For D. sarsii, the sclerite axes (equal to aragonite c-axes) show a stronger tendency to parallel arrangement, while for S. margaritacea, sclerite and aragonite organization is strongly structured into sequential rows of orthogonally alternating sclerite directions. The different arrangements are well reflected in the structured orientational distributions of aragonite a-, b-, c-axes across the EBSD-mapped parts of the scleritomes. We discuss that morphological and crystallographic preferred orientation (texture) is not generated by competitive growth selection (the crystals are not in contact), but is determined by templating on organic matter of the sclerite-secreting epithelial cells and associated papillae.


Subject(s)
Mollusca , Animals , Mollusca/chemistry , Calcium Carbonate/chemistry , Crystallography/methods , Biomineralization , Animal Shells/chemistry , Microscopy, Electron, Scanning
2.
Leukemia ; 27(11): 2200-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23760402

ABSTRACT

A main effector mechanism of rituximab (RTX) is the induction of complement-dependent cytotoxicity (CDC). However, this effector function is limited, because CLL cells are protected from complement-induced damage by regulators of complement activation (RCAs). A prominent RCA in fluid phase is factor H (fH), which has not been investigated in this context yet. Here, we show that fH binds to CLL cells and that human recombinant fH-derived short-consensus repeat 18-20 (hSCR18-20) interferes with this binding. In complement-based lysis assays, CLL cells from therapy-naive patients were differently susceptible to RTX-induced CDC and were defined as CDC responder or CDC non-responder, respectively. In CDC responders, but notably also in non-responders, hSCR18-20 significantly boosted RTX-induced CDC. Killing of the cells was specific for CD20(+) cells, whereas CD20(-) cells were poorly affected. CDC resistance was independent of expression of the membrane-anchored RCAs CD55 and CD59, although blocking of these RCAs further boosted CDC. Thus, inhibition of fH binding by hSCR18-20 sensitizes CLL cells to CDC and may provide a novel strategy for improving RTX-containing immunochemotherapy of CLL patients.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/pharmacology , Antibody-Dependent Cell Cytotoxicity/immunology , Complement Activation/immunology , Cytotoxicity, Immunologic/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Antineoplastic Agents/pharmacology , Blotting, Western , Complement Factor H/immunology , Complement Factor H/metabolism , Flow Cytometry , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Prognosis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Rituximab , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...