Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
iScience ; 27(1): 108621, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38213619

ABSTRACT

Holometabolan larvae are a major part of the animal biomass and an important food source for many animals. Many larvae evolved anti-predator strategies and some of these can even be recognized in fossils. A Lagerstätte known for well-preserved holometabolan larvae is the approximately 100-million-year-old Kachin amber from Myanmar. Fossils can not only allow to identify structural defensive specializations, but also lifestyle and even behavioral aspects. We review here the different defensive strategies employed by various holometabolan larvae found in Kachin amber, also reporting new cases of a leaf-mining hymenopteran caterpillar and a hangingfly caterpillar with extensive spines. This overview demonstrates that already 100 million years ago many modern strategies had already evolved in multiple lineages, but also reveals some cases of now extinct strategies. The repetitive independent evolution of similar strategies in distantly related lineages indicates that several strategies evolved convergently as a result of similar selective pressures.

2.
Insect Sci ; 30(3): 880-886, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36527289

ABSTRACT

We report a fossil aphidlion-like larva preserved with its egg case in 100 million year old Kachin amber, Myanmar. It appears to have been enclosed very shortly after hatching, especially when comparing it with extant aphidlions during hatching. Although hatching aphidlion-like larvae are known from amber from other localities, this is the first case from Myanmar amber, despite the comparably high number of lacewing larvae known from the latter.


Subject(s)
Amber , Fossils , Animals , Larva , Myanmar
3.
Elife ; 112022 12 20.
Article in English | MEDLINE | ID: mdl-36537069

ABSTRACT

Macronaria, a group of mostly colossal sauropod dinosaurs, comprised the largest terrestrial vertebrates of Earth's history. However, some of the smallest sauropods belong to this group as well. The Late Jurassic macronarian island dwarf Europasaurus holgeri is one of the most peculiar and best-studied sauropods worldwide. So far, the braincase material of this taxon from Germany pended greater attention. With the aid of micro-computed tomography (microCT), we report on the neuroanatomy of the nearly complete braincase of an adult individual, as well as the inner ears (endosseous labyrinths) of one other adult and several juveniles (the latter also containing novel vascular cavities). The presence of large and morphologically adult inner ears in juvenile material suggests precociality. Our findings add to the diversity of neurovascular anatomy in sauropod braincases and buttress the perception of sauropods as fast-growing and autonomous giants with manifold facets of reproductive and social behaviour. This suggests that - apart from sheer size - little separated Europasaurus from its large-bodied relatives.


Dinosaurs, like all animals with spines, had their main sensory organs ­ the organs that allowed them to listen, taste, see, smell, think and even keep their balance ­ on their heads. This means that studying their fossilized skulls can provide a wealth of information about how these animals perceived their environment through so-called 'endocasts' (digital models of the cavities within the skull). Endocasts of the skulls of many different dinosaur species already exist, but a small species called Europasaurus holgeri had so far not received this treatment. This sauropod lived in what is now northern Germany during the Late Jurassic period (154 million years ago), and it owed its reduced size to having become isolated on an island, where it became smaller after many generations. Schade et al. wanted to gain a better understanding of certain lifestyle aspects of the biology of E. holgeri, and to be able to compare the endocast anatomy of this species to other dinosaurs. To do this, the team studied the braincases of both very young and mature E. holgeri individuals using a technique called computer tomography. The approach taken by Schade et al. allowed them to examine and describe in detail the inner cavities that once contained the brain, inner ears, nerves and blood supply of eight different E. holgeri individuals. They found that the inner ears of small and young E. holgeri individuals were almost as large as those of their adult counterparts, and very similar in shape. Given that inner ears have roles in both audition and the sense of equilibrium, this suggests that E. holgeri babies were able to leave their nest very soon after hatching. This makes it likely that the babies of the species were highly developed when they hatched, and could probably feed themselves almost immediately, possibly similar to chickens. Furthermore, the relatively large size of the part of the inner ear responsible for hearing hints at E. holgeri being well able to communicate with other members of the species using sound. The findings of Schade et al. add to the diversity of the record on the anatomy of the braincases of dinosaurs. Additionally, the results support the idea that sauropods may have been herd-living animals with social interactions that grew very fast and had to be light on their feet very early in life. Finally, comparing the endocasts of E. holgeri to those of other dinosaurs suggests that, beyond a discrepancy in body size, this species was very similar to its larger relatives on the Jurassic mainland.


Subject(s)
Dinosaurs , Animals , Phylogeny , Dinosaurs/anatomy & histology , Fossils , X-Ray Microtomography , Skull/anatomy & histology , Biological Evolution
4.
PeerJ ; 10: e13025, 2022.
Article in English | MEDLINE | ID: mdl-35415015

ABSTRACT

Elmidae, riffle beetles, have both adult and immature stages that show specializations for water environments. Fossils of adults of Elmidae are already known from amber, however a record of immatures was so far lacking. We report here the first fossil larva of Elmidae, preserved in Baltic amber. To be able to access details of the body hidden by inclusions and "Verlumung" we conducted, in addition to optical documentation methods, micro-CT and synchrotron documentation methods. The larva is characterised by prominent dorso-lateral and lateral processes and a plate-like ventral operculum at the end of the abdomen. The new fossil has similarities in the general body shape and the prominent characters with some modern larvae of Elmidae. The posterior protrusions on the trunk end possibly represent gills, which would imply that fossil larvae of Elmidae also led a water-related life style similar to modern representatives.


Subject(s)
Amber , Coleoptera , Animals , Fossils , Larva , Baltic States
5.
Arthropod Struct Dev ; 60: 101022, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33385761

ABSTRACT

Crustaceans provide a fascinating opportunity for studying adaptations to a terrestrial lifestyle because within this group, the conquest of land has occurred at least ten times convergently. The evolutionary transition from water to land demands various morphological and physiological adaptations of tissues and organs including the sensory and nervous system. In this review, we aim to compare the brain architecture between selected terrestrial and closely related marine representatives of the crustacean taxa Amphipoda, Isopoda, Brachyura, and Anomala with an emphasis on the elements of the olfactory pathway including receptor molecules. Our comparison of neuroanatomical structures between terrestrial members and their close aquatic relatives suggests that during the convergent evolution of terrestrial life-styles, the elements of the olfactory pathway were subject to different morphological transformations. In terrestrial anomalans (Coenobitidae), the elements of the primary olfactory pathway (antennules and olfactory lobes) are in general considerably enlarged whereas they are smaller in terrestrial brachyurans compared to their aquatic relatives. Studies on the repertoire of receptor molecules in Coenobitidae do not point to specific terrestrial adaptations but suggest that perireceptor events - processes in the receptor environment before the stimuli bind - may play an important role for aerial olfaction in this group. In terrestrial members of amphipods (Amphipoda: Talitridae) as well as of isopods (Isopoda: Oniscidea), however, the antennules and olfactory sensilla (aesthetascs) are largely reduced and miniaturized. Consequently, their primary olfactory processing centers are suggested to have been lost during the evolution of a life on land. Nevertheless, in terrestrial Peracarida, the (second) antennae as well as their associated tritocerebral processing structures are presumed to compensate for this loss or rather considerable reduction of the (deutocerebral) primary olfactory pathway. We conclude that after the evolutionary transition from water to land, it is not trivial for arthropods to establish aerial olfaction. If we consider insects as an ingroup of Crustacea, then the Coenobitidae and Insecta may be seen as the most successful crustacean representatives in this respect.


Subject(s)
Adaptation, Biological , Biological Evolution , Crustacea , Olfactory Perception/physiology , Smell/physiology , Amphipoda/anatomy & histology , Amphipoda/physiology , Amphipoda/ultrastructure , Animals , Brachyura/anatomy & histology , Brachyura/physiology , Brachyura/ultrastructure , Crustacea/anatomy & histology , Crustacea/physiology , Crustacea/ultrastructure , Environment , Isopoda/anatomy & histology , Isopoda/physiology , Isopoda/ultrastructure , Microscopy , Microscopy, Electron, Scanning , Olfactory Pathways/anatomy & histology , Olfactory Pathways/physiology , Olfactory Pathways/ultrastructure
6.
Anim Cogn ; 23(6): 1177-1187, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32770436

ABSTRACT

Animals' cognitive abilities can be tested by allowing them to choose between alternatives, with only one alternative offering the correct solution to a novel problem. Hermit crabs are evolutionarily specialized to navigate while carrying a shell, with alternative shells representing different forms of 'extended architecture', which effectively change the extent of physical space an individual occupies in the world. It is unknown whether individuals can choose such architecture to solve novel navigational problems. Here, we designed an experiment in which social hermit crabs (Coenobita compressus) had to choose between two alternative shells to solve a novel problem: escaping solitary confinement. Using X-ray microtomography and 3D-printing, we copied preferred shell types and then made artificial alterations to their inner or outer shell architecture, designing only some shells to have the correct architectural fit for escaping the opening of an isolated crab's enclosure. In our 'escape artist' experimental design, crabs had to choose an otherwise less preferred shell, since only this shell had the right external architecture to allow the crab to free itself from isolation. Across multiple experiments, crabs were willing to forgo preferred shells and choose less preferred shells that enabled them to escape, suggesting these animals can solve novel navigational problems with extended architecture. Yet, it remains unclear if individuals solved this problem through trial-and-error or were aware of the deeper connection between escape and exterior shell architecture. Our experiments offer a foundation for further explorations of physical, social, and spatial cognition within the context of extended architecture.


Subject(s)
Anomura , Animals , Social Isolation
7.
J Comp Neurol ; 528(9): 1561-1587, 2020 06 15.
Article in English | MEDLINE | ID: mdl-31792962

ABSTRACT

The pan-tropic cleaner shrimp Stenopus hispidus (Crustacea, Stenopodidea) is famous for its specific cleaning behavior in association with client fish and an exclusively monogamous life-style. Cleaner shrimps feature a broad communicative repertoire, which is considered to depend on superb motor skills and the underlying mechanosensory circuits in combination with sensory organs. Their most prominent head appendages are the two pairs of very long biramous antennules and antennae, which are used both for attracting client fish and for intraspecific communication. Here, we studied the brain anatomy of several specimens of S. hispidus using histological sections, immunohistochemical labeling as well as X-ray microtomography in combination with 3D reconstructions. Furthermore, we investigated the morphology of antennules and antennae using fluorescence and scanning electron microscopy. Our analyses show that in addition to the complex organization of the multimodal processing centers, especially chemomechanosensory neuropils associated with the antennule and antenna are markedly pronounced when compared to the other neuropils of the central brain. We suggest that in their brains, three topographic maps are present corresponding to the sensory appendages. The brain areas which provide the neuronal substrate for these maps share distinct structural similarities to a unique extent in decapods, such as size and characteristic striated and perpendicular layering. We discuss our findings with respect to the sensory landscape within animal's habitat. In an evolutionary perspective, the cleaner shrimp's brain is an excellent example of how sensory potential and functional demands shape the architecture of primary chemomechanosensory processing areas.


Subject(s)
Animal Communication , Arthropod Antennae/ultrastructure , Brain/anatomy & histology , Decapoda/anatomy & histology , Animals , Chemoreceptor Cells/ultrastructure
8.
Zoological Lett ; 4: 20, 2018.
Article in English | MEDLINE | ID: mdl-30123529

ABSTRACT

BACKGROUND: Ticks can survive long periods without feeding but, when feeding, ingest large quantities of blood, resulting in a more than 100-fold increase of body volume. We study morphological adaptations to changes in opisthosoma volume during feeding in the castor bean tick, Ixodes ricinus. We aim to understand the functional morphological features that accommodate enormous changes in volume changes. METHODS: Using light and electron microscopy, we compare the cuticle and epidermis of the alloscutum, the epithelium of the midgut diverticula, and the tracheae of adult female ticks when fasting, semi-engorged, and fully engorged. RESULTS: Our results add to an existing body of knowledge that the area of the epidermis increases by cellular differentiation, cellular hypertrophy, and changes in the shape of epithelial cells from pseudostratified to single layered prismatic in semi-engorged ticks, and to thin squamous epithelium in fully engorged ticks. We did not find evidence for cell proliferation. The midgut diverticula accommodate the volume increase by cellular hypertrophy and changes in cell shape. In fully engorged ticks, the epithelial cells of the midgut diverticula are stretched to an extremely thin, squamous epithelium. Changes in size and shape (and cell divisions) contribute to the accommodation of volume changes. Tracheae do not increase in size, but extend in length, thus following the volume changes of the opisthosoma in feeding ticks to secure oxygen supply to the internal organs. CONCLUSIONS: Changes of epithelial tissue configuration in the epidermis and the midgut diverticula are described as important components of the morphological response to feeding in ticks. We provide evidence for a previously unknown mechanism hosted in the endocuticle of the tracheae that allows the tracheae of castor bean ticks to expand when the body volume increases and the distance between the respiratory spiracle and the oxygen demanding tissue enlarges. This is the first report of expandable tracheae in arthropods.

9.
Curr Biol ; 28(3): 438-443.e1, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29395923

ABSTRACT

Insects use different parts of their body to cling to mating partners, to catch prey, or to defend themselves, in most cases the mouthparts or the legs. However, in 400 million years of evolution [1, 2], specialized devices were independently acquired in several groups to adopt these tasks, as for instance modified legs in mantids, assassin bugs or stick insects [3-5], or clasping antennae of the globular springtails [6]. So far, no known species used the neck region between the head and thorax in one of these functional contexts. Here we describe females of †Caputoraptor elegans, a very unusual, presumably predacious insect discovered in approximately 100-million-year-old [7] Burmese amber. Based on several morphological features, we conclude that this species lived in the foliage of trees or bushes. A unique feature of the new taxon is a scissor-like mechanism formed by wing-like extensions on the posterior head and corresponding serrated edges of the dorsal sclerite of the first thoracic segment. Based on the specific structure of the apparatus, we conclude that it was probably used by females to hold on to males during copulation. A defensive or prey-catching function appears less likely. A similar mechanism did not evolve in any other known known group of extant or extinct insects.


Subject(s)
Fossils/anatomy & histology , Insecta/classification , Life History Traits , Amber , Animals , Biological Evolution , Female , Insecta/anatomy & histology , Insecta/growth & development , Myanmar , Nymph/anatomy & histology , Nymph/classification , Nymph/growth & development
10.
PeerJ ; 5: e3605, 2017.
Article in English | MEDLINE | ID: mdl-28761789

ABSTRACT

Mantodeans or praying mantises are flying insects and well known for their raptorial behaviour, mainly performed by their first pair of thoracic appendages. We describe here a new, exceptionally preserved specimen of the early mantodean Santanmantis axelrodi Grimaldi, 2003 from the famous 110 million years old Crato Formation, Brazil. The incomplete specimen preserves important morphological details, which were not known in this specific form before for this species or any other representative of Mantodea. Unlike in modern representatives or other fossil forms of Mantodea not only the first pair of thoracic appendages shows adaptations for predation. The femora of the second pair of thoracic appendages bear numerous strong, erect spines which appear to have a sharp tip, with this strongly resembling the spines of the first pair of thoracic appendages. This indicates that individuals of S. axelrodi likely used at least two pairs of thoracic appendages to catch prey. This demonstrates that the prey-catching behaviour was more diverse in early forms of praying mantises than anticipated.

11.
PLoS One ; 12(7): e0179958, 2017.
Article in English | MEDLINE | ID: mdl-28678878

ABSTRACT

Rhizocephala, a group of parasitic castrators of other crustaceans, shows remarkable morphological adaptations to their lifestyle. The adult female parasite consists of a body that can be differentiated into two distinct regions: a sac-like structure containing the reproductive organs (the externa), and a trophic, root like system situated inside the hosts body (the interna). Parasitism results in the castration of their hosts, achieved by absorbing the entire reproductive energy of the host. Thus, the ratio of the host and parasite sizes is crucial for the understanding of the parasite's energetic cost. Using advanced imaging methods (micro-CT in conjunction with 3D modeling), we measured the volume of parasitic structures (externa, interna, egg mass, egg number, visceral mass) and the volume of the entire host. Our results show positive correlations between the volume of (1) entire rhizocephalan (externa + interna) and host body, (2) rhizocephalan externa and host body, (3) rhizocephalan visceral mass and rhizocephalan body, (4) egg mass and rhizocephalan externa, (5) rhizocephalan egg mass and their egg number. Comparing the rhizocephalan Sylon hippolytes, a parasite of caridean shrimps, and representatives of Peltogaster, parasites of hermit crabs, we could match their different traits on a reconstructed relationship. With this study we add new and significant information to our global understanding of the evolution of parasitic castrators, of interactions between a parasitic castrator and its host and of different parasitic strategies within parasitic castrators exemplified by rhizocephalans.


Subject(s)
Pandalidae/parasitology , Thoracica/anatomy & histology , Adaptation, Biological , Animals , Body Size , Host-Parasite Interactions , Ovum/cytology , Pandalidae/anatomy & histology , Pandalidae/physiology , Thoracica/physiology , X-Ray Microtomography
12.
Proc Natl Acad Sci U S A ; 113(20): 5542-6, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27140601

ABSTRACT

A three-dimensionally preserved 2-mm-long larva of the arthropod Leanchoilia illecebrosa from the 520-million-year-old early Cambrian Chengjiang biota of China represents the first evidence, to our knowledge, of such an early developmental stage in a short-great-appendage (SGA) arthropod. The larva possesses a pair of three-fingered great appendages, a hypostome, and four pairs of well-developed biramous appendages. More posteriorly, a series of rudimentary limb Anlagen revealed by X-ray microcomputed tomography shows a gradient of decreasing differentiation toward the rear. This, and postembryonic segment addition at the putative growth zone, are features of late-stage metanauplii of eucrustaceans. L. illecebrosa and other SGA arthropods, however, are considered representative of early chelicerates or part of the stem lineage of all euarthropods. The larva of an early Cambrian SGA arthropod with a small number of anterior segments and their respective appendages suggests that posthatching segment addition occurred in the ancestor of Euarthropoda.


Subject(s)
Arthropods/anatomy & histology , Biota , Larva/anatomy & histology , Animals , Arthropods/ultrastructure , China , Larva/ultrastructure , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...