Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 460: 114781, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38043677

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative movement disorder, characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of aggregated alpha synuclein (aSyn). The disease often presents with early prodromal non-motor symptoms and later motor symptoms. Diagnosing PD based purely on motor symptoms is often too late for successful intervention, as a significant neuronal loss has already occurred. Furthermore, the lower prevalence of PD in females is not well understood, highlighting the need for a better understanding of the interaction between sex and aSyn, the crucial protein for PD pathogenesis. Here, we conducted a comprehensive phenotyping study in 1- to 5-month-old mice overexpressing human aSyn gene (SNCA) in a bacterial artificial chromosome (BAC-SNCA). We demonstrate a SNCA gene-dose-dependent increase of human aSyn and phosphorylated aSyn, as well as a decrease in tyrosine hydroxylase expression in BAC-SNCA mice, with more pronounced effects in male mice. Phosphorylated aSyn was already found in the dorsal motor nucleus of the vagus nerve of 2-month-old mice. This was time-wise associated with significant gait altrations in BAC-SNCA mice as early as 1 and 3 months of age using CatWalk gait analysis. Furthermore, anxiety-related behavioral tests revealed an increase in anxiety levels in male BAC-SNCA mice. Finally, 5-month-old male BAC-SNCA mice exhibited a SNCA gene-dose-dependent elevation in energy expenditure in automated home-cage monitoring. For the first time, these findings describe early-onset, sex- and gene-dose-dependent, aSyn-mediated disturbances in BAC-SNCA mice, providing a model for sex-differences, early-onset neuropathology, and prodromal symptoms of PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , alpha-Synuclein , Animals , Female , Humans , Male , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Chromosomes, Artificial, Bacterial/metabolism , Dopaminergic Neurons/metabolism , Mice, Transgenic , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , Vagus Nerve/metabolism
2.
Exp Gerontol ; 41(8): 793-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16809015

ABSTRACT

It is well documented that neuropeptides participate in local inflammatory reaction and modulate functions of inflammatory cells. The aim of the study was to determine a link between in vivo and in vitro effects of NPY-related peptides on inflammatory response with respect to ageing. Peptide YY (PYY) intraplantarly applied decreases concanavalin A-induced paw edema in 3 and 8 months, but not in 24 months old male rats of Albino Oxford strain. The use of NPY-related receptor-specific peptides and Y1 receptor antagonist revealed that anti-inflammatory effect of PYY is mediated via NPY Y1 receptors. PYY in vitro decreases adherence of macrophages from 8 months, but not from 3 and 24 months old rats and this effect is also mediated via NPY Y1 receptor. Additionally, PYY (10(-6)M) decreases NBT reduction in macrophages from 3 and 8 months old rats, and suppresses NO production in cells from 24 months old rats, albeit regardless of absence of in vivo effect of PYY on inflammation in aged rats. It is concluded that aged rats are less responsive to anti-inflammatory action of PYY compared to adult and young rats, and that ageing is associated with altered NPY Y1 receptor functioning.


Subject(s)
Aging/physiology , Edema/drug therapy , Inflammation/drug therapy , Peptide YY/therapeutic use , Receptors, Neuropeptide Y/physiology , Acute Disease , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cell Adhesion/drug effects , Cells, Cultured , Concanavalin A , Dose-Response Relationship, Drug , Edema/chemically induced , Edema/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/physiology , Male , Nitric Oxide/biosynthesis , Peptide YY/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...