Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Planet Space Sci ; 194: 105105, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33012847

ABSTRACT

This report summarizes observations of returned Apollo rocks and soils, lunar surface images, orbital observations, and experimental impacts related to the erosion and comminution of rocks exposed at the lunar surface. The objective is to develop rigorous criteria for the recognition of impact processes that assist in distinguishing "impact" from other potential erosional processes, particularly thermal fatigue, which has recently been advocated specifically for asteroids. Impact in rock is a process that is centrally to bilaterally symmetric, resulting in highly crushed, high-albedo, quasicircular depressions surrounded by volumetrically prominent spall zones. Containing central glass-lined pits in many cases, such features provide distinctive evidence of impact that is not duplicated by any other process. Additional evidence of impact can include radial fracture systems in the target that emanate from the impact point and clusters of fragments that attest to the lateral acceleration and displacement of each one. It is also important to note that impact produces a wide variety of fragment shapes that might totally overlap with those produced by thermal fatigue; we consider fragment shape to be an unreliable criterion for either process. The stochastic nature of the impact process will result in exponential survival times of surface rocks; that is, rock destruction initially is relatively efficient, but it is followed by ever increasing surface times for the last rock remnants. Thermal fatigue, however, is essentially a thermal-equilibrium process. The corresponding distribution of survival times should be much more peaked in comparison, presumably Gaussian, and diagnostically different from that due to impact. Given the abundance of evidence that has been gleaned from returned Apollo rocks and soils, it is surprising how little has been learned about the impact process from the photography of rocks and boulders taken by the astronauts on the lunar surface. This suggests that it will require rocks and soils returned from asteroids to evaluate the relative roles of thermal versus impact-triggered rock erosion, particularly when both processes are likely to be operating.

2.
Astrobiology ; 9(10): 943-51, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20041747

ABSTRACT

Delivery of prebiotic molecules, such as amino acids and peptides, in meteoritic/micrometeoritic materials to early Earth during the first 500 million years is considered to be one of the main processes by which the building blocks of life arrived on Earth. In this context, we present a study in which the effects of impact shock on amino acids and a peptide in artificial meteorites composed of saponite clay were investigated. The samples were subjected to pressures ranging from 12-28.9 GPa, which simulated impact velocities of 2.4-5.8 km/s for typical silicate-silicate impacts on Earth. Volatilization was determined by weight loss measurement, and the amino acid and peptide response was analyzed by gas chromatography-mass spectrometry. For all compounds, degradation increased with peak pressure. At the highest shock pressures, amino acids with an alkyl side chain were more resistant than those with functional side chains. The peptide cleaved into its two primary amino acids. Some chiral amino acids experienced partial racemization during the course of the experiment. Our data indicate that impact shock may act as a selective filter to the delivery of extraterrestrial amino acids via carbonaceous chondrites.


Subject(s)
Amino Acids/analysis , Amino Acids/chemistry , Meteoroids , Pressure , Dipeptides/analysis , Dipeptides/chemistry , Gas Chromatography-Mass Spectrometry , Stereoisomerism , Volatilization
3.
Science ; 314(5806): 1716-9, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17170290

ABSTRACT

Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.

4.
Science ; 314(5806): 1731-5, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17170294

ABSTRACT

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

5.
Science ; 304(5678): 1764-9, 2004 Jun 18.
Article in English | MEDLINE | ID: mdl-15205524

ABSTRACT

Images taken by the Stardust mission during its flyby of 81P/Wild 2 show the comet to be a 5-kilometer oblate body covered with remarkable topographic features, including unusual circular features that appear to be impact craters. The presence of high-angle slopes shows that the surface is cohesive and self-supporting. The comet does not appear to be a rubble pile, and its rounded shape is not directly consistent with the comet being a fragment of a larger body. The surface is active and yet it retains ancient terrain. Wild 2 appears to be in the early stages of its degradation phase as a small volatile-rich body in the inner solar system.


Subject(s)
Meteoroids , Cosmic Dust , Gases , Spacecraft , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...