Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 1(3): 371-389, 2019 03.
Article in English | MEDLINE | ID: mdl-32694718

ABSTRACT

Obesity promotes the development of insulin resistance and increases the incidence of colitis-associated cancer (CAC), but whether a blunted insulin action specifically in intestinal epithelial cells (IECs) affects CAC is unknown. Here, we show that obesity impairs insulin sensitivity in IECs and that mice with IEC-specific inactivation of the insulin and IGF1 receptors exhibit enhanced CAC development as a consequence of impaired restoration of gut barrier function. Blunted insulin signalling retains the transcription factor FOXO1 in the nucleus to inhibit expression of Dsc3, thereby impairing desmosome formation and epithelial integrity. Both IEC-specific nuclear FoxO1ADA expression and IEC-specific Dsc3 inactivation recapitulate the impaired intestinal integrity and increased CAC burden. Spontaneous colonic tumour formation and compromised intestinal integrity are also observed upon IEC-specific coexpression of FoxO1ADA and a stable Myc variant, thus suggesting a molecular mechanism through which impaired insulin action and nuclear FOXO1 in IECs promotes CAC.


Subject(s)
Colonic Neoplasms/prevention & control , Forkhead Box Protein O1/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Intestinal Mucosa/metabolism , Animals , Colonic Neoplasms/metabolism , Diet, High-Fat , Gene Expression Regulation/physiology , Humans , Insulin/physiology , Intestinal Mucosa/cytology , Mice , Mice, Inbred C57BL , Signal Transduction
2.
Leukemia ; 32(1): 72-82, 2018 01.
Article in English | MEDLINE | ID: mdl-28566736

ABSTRACT

The pathogenesis of chronic lymphocytic leukemia (CLL) has been linked to constitutive NF-κB activation but the underlying mechanisms are poorly understood. Here we show that alternative splicing of the negative regulator of NF-κB and tumor suppressor gene CYLD regulates the pool of CD5+ B cells through sustained canonical NF-κB signaling. Reinforced canonical NF-κB activity leads to the development of B1 cell-associated tumor formation in aging mice by promoting survival and proliferation of CD5+ B cells, highly reminiscent of human B-CLL. We show that a substantial number of CLL patient samples express sCYLD, strongly implicating a role for it in human B-CLL. We propose that our new CLL-like mouse model represents an appropriate tool for studying ubiquitination-driven canonical NF-κB activation in CLL. Thus, inhibition of alternative splicing of this negative regulator is essential for preventing NF-κB-driven clonal CD5+ B-cell expansion and ultimately CLL-like disease.


Subject(s)
Deubiquitinating Enzyme CYLD/genetics , Genes, Tumor Suppressor/physiology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , NF-kappa B/genetics , RNA Splicing/genetics , Signal Transduction/genetics , Animals , B-Lymphocytes/metabolism , CD5 Antigens/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Humans , Mice , Ubiquitination/genetics
3.
Cell Death Differ ; 23(2): 358-68, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26470731

ABSTRACT

The endoplasmic reticulum (ER) serves as the major intracellular Ca(2+) store and has a role in the synthesis and folding of proteins. BAX (BCL2-associated X protein) inhibitor-1 (BI-1) is a Ca(2+) leak channel also implicated in the response against protein misfolding, thereby connecting the Ca(2+) store and protein-folding functions of the ER. We found that BI-1-deficient mice suffer from leukopenia and erythrocytosis, have an increased number of splenic marginal zone B cells and higher abundance and nuclear translocation of NF-κB (nuclear factor-κ light-chain enhancer of activated B cells) proteins, correlating with increased cytosolic and ER Ca(2+) levels. When put into culture, purified knockout T cells and even more so B cells die spontaneously. This is preceded by increased activity of the mitochondrial initiator caspase-9 and correlated with a significant surge in mitochondrial Ca(2+) levels, suggesting an exhausted mitochondrial Ca(2+) buffer capacity as the underlying cause for cell death in vitro. In vivo, T-cell-dependent experimental autoimmune encephalomyelitis and B-cell-dependent antibody production are attenuated, corroborating the ex vivo results. These results suggest that BI-1 has a major role in the functioning of the adaptive immune system by regulating intracellular Ca(2+) homeostasis in lymphocytes.


Subject(s)
B-Lymphocytes/immunology , Membrane Proteins/physiology , T-Lymphocytes/immunology , Active Transport, Cell Nucleus , Animals , Apoptosis , B-Lymphocytes/metabolism , Calcium/metabolism , Calcium Signaling , Caspases/metabolism , Cell Survival , Cytoplasm/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Endoplasmic Reticulum/metabolism , Enzyme Activation , Female , Leukopenia/genetics , Leukopenia/immunology , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Obesity/genetics , Obesity/immunology , Spleen/immunology , Spleen/pathology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...