Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anaerobe ; 81: 102742, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37244477

ABSTRACT

OBJECTIVE: Phocaeicolavulgatus (formerly Bacteroides vulgatus) is a highly abundant and ubiquitous member of the human gut microbiota, associated with human health and disease, and therefore represents an important target for further investigations. In this study a novel gene deletion method was developed for P. vulgatus, expanding the tools available for genetic manipulation of members of the microbial order Bacteroidales. MATERIAL AND METHODS: The study used a combination of bioinformatics and growth experiments in interaction with molecular cloning to validate the applicability of SacB as a counterselection marker in P. vulgatus. RESULTS: In this study, the levansucrase gene sacB from Bacillussubtilis was verified as a functional counterselection marker for P. vulgatus, conferring a lethal sensitivity towards sucrose. Markerless gene deletion based on SacB was applied to delete a gene encoding a putative endofructosidase (BVU1663). The P. vulgatus Δbvu1663 deletion mutant displayed no biomass formation when grown on levan, inulin or their corresponding fructooligosaccharides. This system was also applied for the deletion of the two genes bvu0984 and bvu3649, which are involved in the pyrimidine metabolism. The resulting P. vulgatus Δ0984 Δ3649 deletion mutant no longer showed sensitivity for the toxic pyrimidine analogon 5-fluorouracil, allowing a counterselection with this compound in the double knockout strain. CONCLUSION: The genetic toolbox for P. vulgatus was expanded by a markerless gene deletion system based on SacB as an efficient counterselection marker. The system was employed to successfully delete three genes in P. vulgatus which all resulted in expected phenotypes as confirmed by subsequent growth experiments.


Subject(s)
Bacteroides , Humans , Gene Deletion , Bacteroides/genetics , Cloning, Molecular
2.
AMB Express ; 12(1): 144, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36380213

ABSTRACT

Due to the health-promoting effects and functional properties of inulin-type fructooligosaccharides (I-FOS), the global market for I-FOS is constantly growing. Hence, there is a continuing demand for new, efficient biotechnological approaches for I-FOS production. In this work, crude inulosucrase InuGB-V3 from Lactobacillus gasseri DSM 20604 was used to synthesize I-FOS from sucrose. Supplementation with 1 mM CaCl2, a pH of 3.5-5.5, and an incubation temperature of 40 °C were found to be optimal production parameters at which crude inulosucrase showed high conversion rates, low sucrose hydrolysis, and excellent stability over 4 days. The optimal process conditions were employed in cell-free bioconversion reactions. By elevating the substrate concentration from 570 to 800 g L-1, the I-FOS concentration and the synthesis of products with a low degree of polymerization (DP) could be increased, while sucrose hydrolysis was decreased. Bioconversion of 800 g L-1 sucrose for 20 h resulted in an I-FOS-rich syrup with an I-FOS concentration of 401 ± 7 g L-1 and an I-FOS purity of 53 ± 1% [w/w]. I-FOS with a DP of 3-11 were synthesized, with 1,1-kestotetraose (DP4) being the predominant transfructosylation product. The high-calorie sugars glucose, sucrose, and fructose were removed from the generated I-FOS-rich syrup using activated charcoal. Thus, 81 ± 5% of the initially applied I-FOS were recovered with a purity of 89 ± 1%.

3.
Front Microbiol ; 13: 935062, 2022.
Article in English | MEDLINE | ID: mdl-35801101

ABSTRACT

5-Keto-D-fructose (5-KF) is a natural diketone occurring in micromolar concentrations in honey, white wine, and vinegar. The oxidation of D-fructose to 5-KF is catalyzed by the membrane-bound fructose dehydrogenase complex found in several acetic acid bacteria. Since 5-KF has a sweetening power comparable to fructose and is presumably calorie-free, there is great interest in making the diketone commercially available as a new sugar substitute. Based on a genetically modified variant of the acetic acid bacterium Gluconobacter oxydans 621H, an efficient process for the microbial production of 5-KF was recently developed. However, data on the toxicology of the compound are completely lacking to date. Therefore, this study aimed to investigate the effect of 5-KF on the viability of prokaryotic and eukaryotic cells. It was found that the compound significantly inhibited the growth of the gram-positive and gram-negative model organisms Bacillus subtilis and Escherichia coli in a concentration-dependent manner. Furthermore, cell viability assays confirmed severe cytotoxicity of 5-KF toward the colon cancer cell line HT-29. Since these effects already occurred at concentrations of 5 mM, the use of 5-KF in the food sector should be avoided. The studies performed revealed that in the presence of amines, 5-KF promoted a strong Maillard reaction. The inherent reactivity of 5-KF as well as the Maillard products formed could be the trigger for the observed inhibition of prokaryotic and eukaryotic cells.

4.
J Biotechnol ; 354: 21-33, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35716887

ABSTRACT

Sucrases can modify numerous carbohydrates, and short-chain oligosaccharides produced by the unique transfructosylation activity of levansucrases are promising candidates for the growing sugar substitute market. These compounds could counteract the increasing number of diseases associated with the consumption of high-calorie sugars. Thus, there is great interest in the characterization of novel levansucrases. The commonly used method for sucrase activity determination is to quantify d-glucose released in the sucrose-splitting reaction. This is usually done in a discontinuous mode, i.e., several samples taken from the sucrase reaction are applied to a separately performed d-glucose determination (e.g., GOPOD assay). Employing the newly isolated levansucrase LevSKK21 from Pseudomonas sp. KK21, the feasibility of a one-pot sucrase characterization was investigated by combining sucrase reaction and GOPOD-based d-glucose determination into a single, continuous assay (Real-time GOPOD). The enzyme was characterized with respect to kinetic parameters, ion dependency, pH value, and reaction temperature in a comparative approach employing Real-time GOPOD and HPLC. High data consistency for all investigated enzyme parameters demonstrated that current processes for sucrase characterization can be considerably accelerated by the continuous assay while maintaining data validity. However, the assay was not applicable at acidic pH, as decolorization of the quinoneimine dye formed during the GOPOD reaction was observed. Overall, the study presents valuable data on the potentials of real-time sucrase activity assessment for an accelerated discovery and characterization of interesting enzymes such as the hereby introduced levansucrase LevSKK21. Progress in sucrase discovery will finally foster the development of health-promoting sucrose substitutes.


Subject(s)
Sucrase , Sucrose , Feasibility Studies , Glucose , Oligosaccharides
5.
Article in English | MEDLINE | ID: mdl-33895646

ABSTRACT

In recent decades, strategies to improve human health by modulating the gut microbiota have developed rapidly. One of the most prominent is the use of prebiotics, which can lead to a higher abundance of health-promoting microorganisms in the gut. Currently, oligosaccharides dominate the prebiotic sector due to their ability to promote the growth and activity of probiotic bacteria selectively. Extensive efforts are made to develop effective production strategies for the synthesis of prebiotic oligosaccharides, including the use of microbial enzymes. Within the genus Lactobacillus, several inulosucrases have been identified, which are suitable for the synthesis of prebiotic inulin-type fructooligosaccharides (inulin-FOS). In this study, a truncated version of the inulosucrase from Lactobacillus gasseri DSM 20604 was used for the efficient synthesis of inulin-FOS. Product titers of 146.2 ±â€¯7.4 g inulin-FOSL-1 were achieved by the catalytic activity of the purified recombinant protein InuGB-V3. A time and resource-saving HPLC method for rapid analysis of inulin-FOS in isocratic mode was developed and optimized, allowing baseline separated analysis of inulin-FOS up to a degree of polymerization (DP) of five in less than six minutes. Long-chain inulin-FOS with a DP of 17 can be analyzed in under 45 min. The developed method offers the advantages of isocratic HPLC analysis, such as low flow rates, high sensitivity, and the use of a simple, inexpensive chromatographic setup. Furthermore, it provides high-resolution separation of long-chain inulin-FOS, which can usually only be achieved with gradient systems.


Subject(s)
Escherichia coli/metabolism , Inulin , Oligosaccharides , Prebiotics/analysis , Escherichia coli/genetics , Hexosyltransferases/chemistry , Inulin/analysis , Lactobacillus gasseri/enzymology , Oligosaccharides/analysis , Recombinant Proteins/chemistry
6.
Carbohydr Polym ; 255: 117384, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33436213

ABSTRACT

Prebiotics are known for their ability to modulate the composition of the human microbiome and mediate health-promoting benefits. Endo-levanases, which hydrolyze levan into short-chain FOS, could be used for the production of levan-based prebiotics. The novel endo-levanase (LevB2286) from Azotobacter chroococcum DSM 2286, combines an exceptionally high specific activity with advantageous hydrolytic properties. Starting from levan isolated from Timothy grass, LevB2286 produced FOS ranging from DP 2 - 8. In contrast to endo-levanases described in the literature, LevB2286 formed minor amounts of fructose and levanbiose, even with greatly extended incubation. The combined activity of LevB2286 and the levansucrase LevS1417 from Gluconobacter japonicus LMG 1417 led to a one-step synthesis of levan-type FOS from sucrose. 387.4 ± 17.3 g L-1 FOS were produced within 48 h by the production strategy based on crude cell extract of recombinant Escherichia coli expressing levS1417 and levB2286 simultaneously.


Subject(s)
Azotobacter/enzymology , Bacterial Proteins/metabolism , Gluconobacter/enzymology , Glycoside Hydrolases/metabolism , Hexosyltransferases/metabolism , Oligosaccharides/biosynthesis , Prebiotics/analysis , Azotobacter/genetics , Bacterial Proteins/genetics , Disaccharides/chemistry , Disaccharides/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Fructans/chemistry , Fructans/metabolism , Fructose/chemistry , Fructose/metabolism , Gene Expression , Gluconobacter/genetics , Glycoside Hydrolases/genetics , Hexosyltransferases/genetics , Humans , Hydrolysis , Oligosaccharides/chemistry , Phleum/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sucrose/chemistry , Sucrose/metabolism
7.
Int J Biol Macromol ; 164: 295-303, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32679320

ABSTRACT

Levan, a ß-2,6-glycosidic linked fructan, is a promising alternative for the inulin dominated fructan market. Although levan is already used in some cosmetic products, the commercial availability of the fructan is still limited. Here we show that Gluconobacter japonicus LMG 1417 is a potent levan-forming organism and a promising platform for the industrial production of levan. The levansucrase LevS1417, which is produced by G. japonicus LMG 1417 and secreted by a signal-peptide-independent pathway, exhibited extraordinary high activity (4726 ±â€¯821 U mg-1 at 50 °C). A cell-free levan production based on the supernatant of the investigated strain led to a final levan yield of 157.9 ±â€¯7.6 g L-1. The amount of secreted levansucrase was more than doubled by plasmid-mediated homologous overproduction of LevS1417 in G. japonicus LMG 1417. Accordingly, the space-time yield of cell-free levan production was doubled using the plasmid-bearing mutant.


Subject(s)
Fructans/biosynthesis , Gluconobacter/metabolism , Chemical Fractionation , Chromatography, High Pressure Liquid , Dietary Fiber , Enzyme Activation , Escherichia coli , Fructans/isolation & purification , Gene Expression , Gluconobacter/enzymology , Hexosyltransferases/metabolism , Kinetics , Magnetic Resonance Spectroscopy , Plasmids/genetics , Prebiotics , Spectroscopy, Fourier Transform Infrared
8.
J Biotechnol ; 307: 164-174, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31704125

ABSTRACT

A promising alternative to high-calorie sugars and artificial sweeteners is the microbially produced fructose derivative 5-ketofructose (5-KF). The key enzyme for biotransformation, fructose dehydrogenase (Fdh), was overproduced in Gluconobacter (G.) oxydans and G. japonicus LMG 26773. Furthermore, the fdh genes were integrated into the chromosome of G. oxydans (G. oxydans Δmgdh::fdh). All mutants showed high fructose oxidation rates forming 5-KF. G. japonicus LMG 26773 fdh was selected for 5-KF production from the cost-efficient and renewable feedstock sucrose because the organism possessed both, a highly active Fdh and an enzyme able to cleave sucrose. However, 5-KF yield was low because the strain formed levan and consumed 5-KF in the second growth phase. Several Gluconobacter strains were screened for sucrose-hydrolyzing enzymes. One of these proteins (Inv1417) was characterized and it was found that the enzyme showed the highest specific activity compared to all mesophilic invertases described so far (Vmax = 2295 ± 243 U mg protein-1). The corresponding gene was expressed in G. oxydans Δmgdh::fdh. The results clearly indicated that both heterologously produced enzymes Fdh and Inv1417 were active in this single-strain system for 5-KF synthesis. Overall 84 ± 2% of the available fructose units of sucrose were converted to 5-KF.


Subject(s)
Fructose/analogs & derivatives , Gluconobacter/enzymology , Oxidoreductases/metabolism , Sweetening Agents/metabolism , beta-Fructofuranosidase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fructose/metabolism , Gluconobacter/genetics , Oxidation-Reduction , Oxidoreductases/genetics , Sucrose/metabolism , beta-Fructofuranosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...