Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Methods Mol Biol ; 2688: 135-146, 2023.
Article in English | MEDLINE | ID: mdl-37410290

ABSTRACT

Metabolites reflect the biological state of cells and tissue, and metabolomics is therefore a field of high interest both to understand normal physiological functions and disease development. When studying heterogeneous tissue samples, mass spectrometry imaging (MSI) is a valuable tool as it conserves the spatial distribution of analytes on tissue sections. A large proportion of metabolites are, however, small and polar, making them vulnerable to delocalizing through diffusion during sample preparation. Here we present a sample preparation method optimized to limit diffusion and delocalization of small polar metabolites in fresh frozen tissue sections. This sample preparation protocol includes cryosectioning, vacuum frozen storage, and matrix application. The methods described were primely developed for matrix-assisted laser desorption/ionization (MALDI) MSI, but the protocol describing cryosectioning and vacuum freezing storage can also be applied before desorption electrospray ionization (DESI) MSI. Our vacuum drying and vacuum packing approach offers a particular advantage to limit delocalization and safe storage.


Subject(s)
Diagnostic Imaging , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Specimen Handling , Metabolomics
2.
Proteomics ; 22(10): e2100223, 2022 05.
Article in English | MEDLINE | ID: mdl-35170848

ABSTRACT

MALDI MS imaging (MSI) is a powerful analytical tool for spatial peptide detection in heterogeneous tissues. Proper sample preparation is crucial to achieve high quality, reproducible measurements. Here we developed an optimized protocol for spatially resolved proteolytic peptide detection with MALDI time-of-flight MSI of fresh frozen prostate tissue sections. The parameters tested included four different tissue washes, four methods of protein denaturation, four methods of trypsin digestion (different trypsin densities, sprayers, and incubation times), and five matrix deposition methods (different sprayers, settings, and matrix concentrations). Evaluation criteria were the number of detected and excluded peaks, percentage of high mass peaks, signal-to-noise ratio, spatial localization, and average intensities of identified peptides, all of which were integrated into a weighted quality evaluation scoring system. Based on these scores, the optimized protocol included an ice-cold EtOH+H2 O wash, a 5 min heating step at 95°C, tryptic digestion incubated for 17h at 37°C and CHCA matrix deposited at a final amount of 1.8 µg/mm2 . Including a heat-induced protein denaturation step after tissue wash is a new methodological approach that could be useful also for other tissue types. This optimized protocol for spatial peptide detection using MALDI MSI facilitates future biomarker discovery in prostate cancer and may be useful in studies of other tissue types.


Subject(s)
Peptides , Prostate , Humans , Male , Prostate/metabolism , Proteins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Trypsin/metabolism
3.
Biomedicines ; 9(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802022

ABSTRACT

Cancer patient-derived xenografts (PDXs) better preserve tumor characteristics and microenvironment than traditional cancer cell line derived xenografts and are becoming a valuable model in translational cancer research and personalized medicine. We have established a PDX model for colorectal cancer (CRC) in CIEA NOG mice with a 50% engraftment rate. Tumor fragments from patients with CRC (n = 5) were engrafted in four mice per tumor (n = 20). Mice with established PDXs received a liquid diet enriched with fish oil or placebo, and fatty acid profiling was performed to measure fatty acid content in whole blood. Moreover, a biobank consisting of tissue and blood samples from patients was established. Histology, immunohistochemistry and in situ hybridization procedures were used for staining of tumor and xenograft tissue slides. Results demonstrate that key histological characteristics of the patients' tumors were retained in the established PDXs, and the liquid diets were consumed as intended by the mice. Some of the older mice developed lymphomas that originated from human Ki67+, CD45+, and EBV+ lymphoid cells. We present a detailed description of the process and methodology, as well as possible issues that may arise, to refine the method and improve PDX engraftment rate for future studies. The established PDX model for CRC can be used for exploring different cancer treatment regimes, and liquid diets enriched with fish oil may be successfully delivered to the mice through the drinking flasks.

4.
Cancer Metab ; 9(1): 9, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33514438

ABSTRACT

BACKGROUND: Prostate cancer tissues are inherently heterogeneous, which presents a challenge for metabolic profiling using traditional bulk analysis methods that produce an averaged profile. The aim of this study was therefore to spatially detect metabolites and lipids on prostate tissue sections by using mass spectrometry imaging (MSI), a method that facilitates molecular imaging of heterogeneous tissue sections, which can subsequently be related to the histology of the same section. METHODS: Here, we simultaneously obtained metabolic and lipidomic profiles in different prostate tissue types using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI. Both positive and negative ion mode were applied to analyze consecutive sections from 45 fresh-frozen human prostate tissue samples (N = 15 patients). Mass identification was performed with tandem MS. RESULTS: Pairwise comparisons of cancer, non-cancer epithelium, and stroma revealed several metabolic differences between the tissue types. We detected increased levels of metabolites crucial for lipid metabolism in cancer, including metabolites involved in the carnitine shuttle, which facilitates fatty acid oxidation, and building blocks needed for lipid synthesis. Metabolites associated with healthy prostate functions, including citrate, aspartate, zinc, and spermine had lower levels in cancer compared to non-cancer epithelium. Profiling of stroma revealed higher levels of important energy metabolites, such as ADP, ATP, and glucose, and higher levels of the antioxidant taurine compared to cancer and non-cancer epithelium. CONCLUSIONS: This study shows that specific tissue compartments within prostate cancer samples have distinct metabolic profiles and pinpoint the advantage of methodology providing spatial information compared to bulk analysis. We identified several differential metabolites and lipids that have potential to be developed further as diagnostic and prognostic biomarkers for prostate cancer. Spatial and rapid detection of cancer-related analytes showcases MALDI-TOF MSI as a promising and innovative diagnostic tool for the clinic.

5.
Anal Chem ; 92(4): 3171-3179, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31944670

ABSTRACT

Levels of zinc, along with its mechanistically related metabolites citrate and aspartate, are widely reported as reduced in prostate cancer compared to healthy tissue and are therefore pointed out as potential cancer biomarkers. Previously, it has only been possible to analyze zinc and metabolites by separate detection methods. Through matrix-assisted laser desorption/ionization mass spectrometry imaging (MSI), we were for the first time able to demonstrate, in two different sample sets (n = 45 and n = 4), the simultaneous spatial detection of zinc, in the form of ZnCl3-, together with citrate, aspartate, and N-acetylaspartate on human prostate cancer tissues. The reliability of the ZnCl3- detection was validated by total zinc determination using laser ablation inductively coupled plasma MSI on adjacent serial tissue sections. Zinc, citrate, and aspartate were correlated with each other (range r = 0.46 to 0.74) and showed a significant reduction in cancer compared to non-cancer epithelium (p < 0.05, log2 fold change range: -0.423 to -0.987), while no significant difference between cancer and stroma tissue was found. Simultaneous spatial detection of zinc and its metabolites is not only a valuable tool for analyzing the role of zinc in prostate metabolism but might also provide a fast and simple method to detect zinc, citrate, and aspartate levels as a biomarker signature for prostate cancer diagnostics and prognostics.


Subject(s)
Prostate/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Zinc/metabolism , Aspartic Acid/metabolism , Citrates/metabolism , Humans , Male , Prostate/cytology , Prostate/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Time Factors
6.
FEBS J ; 285(13): 2446-2467, 2018 07.
Article in English | MEDLINE | ID: mdl-29723445

ABSTRACT

The omega-3 fatty acid docosahexaenoic acid (DHA) is known as an anticancer agent. Colorectal cancer (CRC) cells exhibit different sensitivity toward DHA, but the mechanisms involved are still unclear. Gene expression profiling of 10 CRC cell lines demonstrated a correlation between the level of DHA sensitivity and different biological stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and autophagy. The basal level of autophagy and MAP1LC3B-II protein correlated with DHA sensitivity in the cell lines studied. DHA induced oxidative stress, ER stress, and autophagy in DHA-sensitive DLD-1 cells, while the less sensitive LS411N cells were affected to a much lesser extent. Co-treatment with DHA and the autophagy inducer rapamycin reduced DHA sensitivity in DLD-1 and HCT-8 cells, while co-treatment with DHA and the autophagy inhibitors chloroquine and 3-methyladenine increased the DHA sensitivity in LS411N and LS513 cells. Differentially expressed genes correlating with DHA sensitivity and the level of autophagy demonstrated an overlap in biological pathways involved. Results indicate the basal level of autophagy and MAP1LC3B-II protein as potential biomarkers for DHA sensitivity in CRC cells. DATABASES: Protocol and data for gene expression experiments have been submitted to ArrayExpress with accession number E-MTAB-5750.


Subject(s)
Autophagy/genetics , Biomarkers, Tumor/genetics , Docosahexaenoic Acids/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Microtubule-Associated Proteins/genetics , Apoptosis/drug effects , Apoptosis/genetics , Biomarkers, Tumor/metabolism , Caco-2 Cells , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Gene Expression Profiling/methods , HT29 Cells , Humans , Microtubule-Associated Proteins/metabolism , Oxidative Stress/drug effects , Oxidative Stress/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...