Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Ann N Y Acad Sci ; 1534(1): 145-155, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520387

ABSTRACT

Cardiorespiratory performance segregates into rat strains of inherited low- and high-capacity runners (LCRs and HCRs); during adulthood, this segregation remains stable, but widens in senescence and is followed by segregated function, health, and mortality. However, this segregation has not been investigated prior to adulthood. We, therefore, assessed cardiorespiratory performance and cardiac cell (cardiomyocyte) structure-function in 1- and 4-month-old LCRs and HCRs. Maximal oxygen uptake was 23% less in LCRs at 1-month compared to HCRs at 1-month, and 72% less at 4 months. Cardiomyocyte contractility was 37-56% decreased, and Ca2+ release was 34-62% decreased, in 1- and 4-month LCRs versus HCRs. This occurred because HCRs had improved contractility and Ca2+ release during maturation, whereas LCRs did not. In quiescent cardiomyocytes, LCRs displayed 180% and 297% more Ca2+ sparks and 91% and 38% more Ca2+ waves at 1 and 4 months versus HCRs. Cell sizes were not different between LCRs and HCRs, but LCRs showed reduced transverse-tubules versus HCRs, though no discrepant transverse-tubule generation occurred during maturation. In conclusion, LCRs show reduced scores for aerobic capacity and cardiomyocyte structure-function compared to HCRs and there is a widening divergence between LCRs and HCRs during juvenile to near-adult maturation.


Subject(s)
Heart , Myocytes, Cardiac , Rats , Animals
2.
Int J Mol Sci ; 24(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37047592

ABSTRACT

Ischemia-reperfusion (I-R) injury is a cardinal pathophysiological hallmark of ischemic heart disease (IHD). Despite significant advances in the understanding of what causes I-R injury and hypoxia-reoxygenation (H-R) stress, viable molecular strategies that could be targeted for the treatment of the deleterious biochemical pathways activated during I-R remain elusive. The master hypoxamiR, microRNA-210 (miR-210), is a major determinant of protective cellular adaptation to hypoxia stress but exacerbates apoptotic cell death during cellular reoxygenation. While the hypoxia-induced transcriptional up-regulation of miR-210 is well delineated, the cellular mechanisms and molecular entities that regulate the transcriptional induction of miR-210 during the cellular reoxygenation phase have not been elucidated yet. Herein, in immortalized AC-16 cardiomyocytes, we delineated the indispensable role of the ubiquitously expressed transcription factor, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in H-R-induced miR-210 expression during cellular reoxygenation. Using dominant negative and dominant active expression vectors encoding kinases to competitively inhibit NF-κB activation, we elucidated NF-κB activation as a significant mediator of H-R-induced miR-210 expression. Ensuing molecular assays revealed a direct NF-κB-mediated transcriptional up-regulation of miR-210 expression in response to the H-R challenge that is characterized by the NF-κB-mediated reorchestration of the entire repertoire of histone modification changes that are a signatory of a permissive actively transcribed miR-210 promoter. Our study confers a novel insight identifying NF-κB as a potential novel molecular target to combat H-R-elicited miR-210 expression that fosters augmented cardiomyocyte cell death.


Subject(s)
MicroRNAs , Myocardial Ischemia , Reperfusion Injury , Humans , NF-kappa B/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Signal Transduction , Myocardial Ischemia/metabolism , Cell Hypoxia/genetics , Myocytes, Cardiac/metabolism , Reperfusion Injury/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics
3.
Int J Mol Sci ; 23(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36012628

ABSTRACT

Apoptotic cell death is a deleterious consequence of hypoxia-induced cellular stress. The master hypoxamiR, microRNA-210 (miR-210), is considered the primary driver of the cellular response to hypoxia stress. We have recently demonstrated that miR-210 attenuates hypoxia-induced apoptotic cell death. In this paper, we unveil that the miR-210-induced inhibition of the serine/threonine kinase Glycogen Synthase Kinase 3 beta (GSK3ß) in AC-16 cardiomyocytes subjected to hypoxia stress underlies the salutary protective response of miR-210 in mitigating the hypoxia-induced apoptotic cell death. Using transient overexpression vectors to augment miR-210 expression concomitant with the ectopic expression of the constitutive active GSK3ß S9A mutant (ca-GSK3ß S9A), we exhaustively performed biochemical and molecular assays to determine the status of the hypoxia-induced intrinsic apoptosis cascade. Caspase-3 activity analysis coupled with DNA fragmentation assays cogently demonstrate that the inhibition of GSK3ß kinase activity underlies the miR-210-induced attenuation in the hypoxia-driven apoptotic cell death. Further elucidation and delineation of the upstream cellular events unveiled an indispensable role of the inhibition of GSK3ß kinase activity in mediating the miR-210-induced mitigation of the hypoxia-driven BAX and BAK insertion into the outer mitochondria membrane (OMM) and the ensuing Cytochrome C release into the cytosol. Our study is the first to unveil that the inhibition of GSK3ß kinase activity is indispensable in mediating the miR-210-orchestrated protective cellular response to hypoxia-induced apoptotic cell death.


Subject(s)
Apoptosis , Glycogen Synthase Kinase 3 beta , MicroRNAs , Apoptosis/genetics , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Hypoxia/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction
4.
Sci Rep ; 12(1): 8239, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581305

ABSTRACT

This study evaluated acute cardiac stress after a high-intensity interval training session in patients with type 2 diabetes (T2D) versus healthy controls. High intensity aerobic exercise was performed by 4 × 4-min intervals (90-95% of maximal heart rate), followed by a ramp protocol to peak oxygen uptake. Echocardiography was performed before and 30 min after exercise. Holter electrocardiography monitored heart rhythms 24 h before, during, and 24 h after the exercise. Left atrial end-systolic volume, peak early diastolic mitral annular velocity, and the ratio of peak early to late diastolic mitral inflow velocity were reduced by approximately 18%, 15%, and 31%, respectively, after exercise across groups. Left ventricular end-diastolic wall thickness was the only echo parameter that significantly differed between groups in response to exercise. The T2D group had a rate of supraventricular extrasystoles per hour that was 265% greater than that of the controls before exercise, which remained higher after exercise. A single exhaustive exercise session impaired left ventricular diastolic function in both groups. The findings also indicated impaired right ventricular function in patients with T2D after exercise.ClinicalTrials.gov Identifier: NCT02998008.


Subject(s)
Diabetes Mellitus, Type 2 , Diastole/physiology , Exercise Test , Humans , Pilot Projects , Ventricular Function, Left/physiology
5.
Biomedicines ; 9(9)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34572418

ABSTRACT

Following myocardial infarction, reperfusion injury (RI) is commonly observed due to the excessive formation of, e.g., reactive oxygen species (ROS). Doxorubicin (DOX), a widely used anti-cancer drug, is also known to cause cardiotoxicity due to excessive ROS production. Exercise training has been shown to protect the heart against both RI- and DOX-induced cardiotoxicity, but the exact mechanism is still unknown. Neuron-derived orphan receptor 1 (NOR-1) is an important exercise-responsive protein in the skeletal muscle which has also been reported to facilitate cellular survival during hypoxia. Therefore, we hypothesized that NOR-1 could protect cardiomyocytes (CMs) against cellular stress induced by DOX. We also hypothesized that NOR-1 is involved in preparing the CMs against a stress situation during nonstimulated conditions by increasing cell viability. To determine the protective effect of NOR-1 in CMs stressed with DOX challenge, we overexpressed NOR-1 in AC16 human CMs treated with 5 µM DOX for 12 h or the respective vehicle control, followed by performing Lactate dehydrogenase (LDH) activity, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and caspase-3 activity assays to measure cell death, cell viability, and apoptosis, respectively. In addition, Western blotting analysis was performed to determine the expression of key proteins involved in cardioprotection. We demonstrated that NOR-1 overexpression decreased cell death (p < 0.105) and apoptosis (p < 0.01) while increasing cell viability (p < 0.05) in DOX-treated CMs. We also observed that NOR-1 overexpression increased phosphorylation of extracellular signal-regulated kinase (ERK) (p < 0.01) and protein expression levels of B cell lymphoma extra-large (Bcl-xL) (p < 0.01). We did not detect any significant changes in phosphorylation of protein kinase B (Akt), glycogen synthase kinase-3ß (GSK-3ß) and signal transducer and activator of transcription 3 (STAT3) or expression levels of superoxide dismutase 2 (SOD2) and cyclin D1. Furthermore, we demonstrated that NOR-1 overexpression increased the cell viability (p < 0.0001) of CMs during nonstimulated conditions without affecting cell death or apoptosis. Our findings indicate that NOR-1 could serve as a potential cardioprotective protein in response to Doxorubicin-induced cellular stress.

6.
Diagnostics (Basel) ; 11(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572486

ABSTRACT

Ischemic heart disease (IHD) is the primary cause of death globally. IHD is associated with the disruption of blood supply to the heart muscles, which often results in myocardial infarction (MI) that further may progress to heart failure (HF). Exosomes are a subgroup of extracellular vesicles that can be secreted by virtually all types of cells, including cardiomyocytes, cardiac fibroblasts, endothelial cells, and stem and progenitor cells. Exosomes represent an important means of cell-cell communication through the transport of proteins, coding and non-coding RNA, and other bioactive molecules. Several studies show that exosomes play an important role in the progression of IHD, including endothelial dysfunction, the development of arterial atherosclerosis, ischemic reperfusion injury, and HF development. Recently, promising data have been shown that designates exosomes as carriers of cardioprotective molecules that enhance the survival of recipient cells undergoing ischemia. In this review, we summarize the functional involvement of exosomes regarding IHD. We also highlight the cardioprotective effects of native and bioengineered exosomes to IHD, as well as the possibility of using exosomes as natural biomarkers of cardiovascular diseases. Lastly, we discuss the opportunities and challenges that need to be addressed before exosomes can be used in clinical applications.

7.
Biomedicines ; 10(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35052722

ABSTRACT

Apoptotic cell death of cardiomyocytes is a characteristic hallmark of ischemia-reperfusion (I/R) injury. The master hypoxamiR, microRNA-210 (miR-210), is considered the primary driver of the cellular response to hypoxic stress. However, to date, no consensus has emerged with regards to the polarity of the miR-210-elicited cellular response, as miR-210 has been shown to exacerbate as well as attenuate hypoxia-driven apoptotic cell death. Herein, in AC-16 cardiomyocytes subjected to hypoxia-reoxygenation (H-R) stress, we unravel novel facets of miR-210 biology and resolve the biological response mediated by miR-210 into the hypoxia and reoxygenation temporal components. Using transient overexpression and decoy/inhibition vectors to modulate miR-210 expression, we elucidated a Janus role miR-210 in the cellular response to H-R stress, wherein miR-210 mitigated the hypoxia-induced apoptotic cell death but exacerbated apoptotic cell death during cellular reoxygenation. We further delineated the underlying cellular mechanisms that confer this diametrically opposite effect of miR-210 on apoptotic cell death. Our exhaustive biochemical assays cogently demonstrate that miR-210 attenuates the hypoxia-driven intrinsic apoptosis pathway, while significantly augmenting the reoxygenation-induced caspase-8-mediated extrinsic apoptosis pathway. Our study is the first to unveil this Janus role of miR-210 and to substantiate the cellular mechanisms that underlie this functional duality.

8.
J Mol Cell Cardiol ; 148: 106-119, 2020 11.
Article in English | MEDLINE | ID: mdl-32918915

ABSTRACT

AIMS: Endurance training improves aerobic fitness and cardiac function in individuals with heart failure. However, the underlying mechanisms are not well characterized. Exercise training could therefore act as a tool to discover novel targets for heart failure treatment. We aimed to associate changes in Ca2+ handling and electrophysiology with micro-RNA (miRNA) profile in exercise trained heart failure rats to establish which miRNAs induce heart failure-like effects in Ca2+ handling and electrophysiology. METHODS AND RESULTS: Post-myocardial infarction (MI) heart failure was induced in Sprague Dawley rats. Rats with MI were randomized to sedentary control (sed), moderate (mod)- or high-intensity (high) endurance training for 8 weeks. Exercise training improved cardiac function, Ca2+ handling and electrophysiology including reduced susceptibility to arrhythmia in an exercise intensity-dependent manner where high intensity gave a larger effect. Fifty-five miRNAs were significantly regulated (up or down) in MI-sed, of which 18 and 3 were changed towards Sham-sed in MI-high and MI-mod, respectively. Thereafter we experimentally altered expression of these "exercise-miRNAs" individually in human induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CM) in the same direction as they were changed in MI. Of the "exercise-miRNAs", miR-214-3p prolonged AP duration, whereas miR-140 and miR-208a shortened AP duration. miR-497-5p prolonged Ca2+ release whereas miR-214-3p and miR-31a-5p prolonged Ca2+ decay. CONCLUSION: Using exercise training as a tool, we discovered that miR-214-3p, miR-497-5p, miR-31a-5p contribute to heart-failure like behaviour in Ca2+ handling and electrophysiology and could be potential treatment targets.


Subject(s)
Electrophysiological Phenomena , Heart Failure/genetics , Heart Failure/physiopathology , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocardial Infarction/physiopathology , Physical Conditioning, Animal , Aerobiosis , Animals , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/physiopathology , Biomarkers/metabolism , Cardiomegaly/complications , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Female , Gene Expression Regulation , Heart Failure/complications , MicroRNAs/metabolism , Myocardial Contraction/physiology , Myocardial Infarction/complications , Myocytes, Cardiac/metabolism , Rats, Sprague-Dawley , Ventricular Fibrillation/complications , Ventricular Fibrillation/genetics , Ventricular Fibrillation/physiopathology
9.
Am J Physiol Cell Physiol ; 318(1): C94-C102, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31618079

ABSTRACT

Matrix metalloproteinases (MMP) are important for cardiac remodeling. Recently, microRNA (miR)-451a has been found to inhibit the expression of both MMP-2 and MMP-9 in human malignancies, but its role in cardiomyocytes has not been explored. We hypothesized that miR-451a modulates MMP-2 and MMP-9 levels in human cardiomyocytes. The role of miR-451a on regulation of MMP-2 and MMP-9 was evaluated in two separate pathological models using Cor.4U human inducible pluripotent stem cell-derived cardiomyocytes (hiPS-CMs): 1) endothelin-1 (ET-1), and 2) 48-h hypoxia (1% O2). Both models were transfected with synthetic miR-451a mimics or scramble control. Expression of both mRNA and miR was determined by quantitative real-time polymerase chain reaction and protein activity by (MMP-2/9) activity assay. Bioinformatic analyses were performed using Targetscan 7.1 and STRING 10.5. hiPS-CMs stimulated by hypoxia increased both MMP-2 and MMP-9 expression levels compared with normoxia (P < 0.05), whereas ET-1 stimulation only increased the MMP-9 level compared with vehicle controls (P < 0.05). miR-451a mimics prevented the increase of MMP-2 and MMP-9 expression in both models. Protein activity of MMP-2 and MMP-9 was confirmed to be lower following treatment with miR-451a mimic compared with scramble-controls. Six of 28 predicted gene transcripts of miR-451a were linked to MMP-2 and MMP-9; Macrophage migration inhibitory factor (MIF) was the only predicted target of miR-451a that was increased by ET-1 and hypoxia and reduced following miR-451a mimic transfection. miR-451a prevent the increase of MMP-2 and MMP-9 in human cardiomyocytes during pathological stress. The modulation by miR-451a on MMP-2 and MMP-9 is caused by MIF.


Subject(s)
Cardiomegaly/enzymology , Induced Pluripotent Stem Cells/enzymology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/enzymology , Cardiomegaly/genetics , Cardiomegaly/pathology , Cell Differentiation , Cell Hypoxia , Cell Line , Endothelin-1/toxicity , Enzyme Activation , Gene Expression Regulation, Enzymologic , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/pathology , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , MicroRNAs/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Signal Transduction
10.
Scand Cardiovasc J ; 54(2): 84-91, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31500456

ABSTRACT

Objectives. Heart failure (HF) impairs resting myocardial energetics, myocardial mitochondrial performance, and maximal oxygen uptake (VO2max). Exercise training is included in most rehabilitation programs and benefits HF patients. However, the effect of exercise intensity on cardiac mitochondrial respiration and concentrations of the key bioenergetic metabolites phosphocreatine (PCr), adenosine triphosphate (ATP), and inorganic phosphate (Pi) is unclear. This study aimed to investigate the effects of exercise training at different intensities in rats with HF. Methods. Rats underwent myocardial infarction or sham operations and were divided into three subgroups: sedentary, moderate intensity, or high intensity. The impact of HF and 6 weeks of exercise training on energy metabolism was evaluated by 31P magnetic resonance spectroscopy and mitochondrial respirometry. The concentrations of PCr, ATP, and Pi were quantified by magnetic resonance spectroscopy. VO2max was measured by treadmill respirometry. Results. Exercise training increased VO2max in sham and HF. PCr/ATP ratio was reduced in HF (p < .01) and remained unchanged by exercise training. PCr concentration was significantly lower in HF compared to sham (p < .01). Moderate and high-intensity exercise training increased ATP in HF and sham. HF impaired complex I (CI) and complex II (p = .034) respiration. High-intensity exercise training recovered CI respiration in HF rats compared to HF sedentary (p = .014). Conclusions. Exercise training improved cardiac performance, as indicated by increased VO2max and higher exercise capacity, without changing the myocardial PCr/ATP ratio. These observations suggest that the PCr/ATP biomarker is not suited to evaluate the beneficial effects of exercise training in the heart. The exact mechanisms require further investigations, as exercise training did increase ATP levels and CI respiration.


Subject(s)
Energy Metabolism , Exercise Therapy , Heart Failure/therapy , Mitochondria, Heart/metabolism , Myocardium/metabolism , Adenosine Triphosphate/metabolism , Animals , Biomarkers , Disease Models, Animal , Exercise Tolerance , Female , Heart Failure/metabolism , Heart Failure/physiopathology , Oxygen Consumption , Phosphocreatine/metabolism , Rats, Sprague-Dawley
11.
Noncoding RNA ; 5(2)2019 03 29.
Article in English | MEDLINE | ID: mdl-30934986

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of death worldwide and, despite continuous advances, better diagnostic and prognostic tools, as well as therapy, are needed. The human transcriptome, which is the set of all RNA produced in a cell, is much more complex than previously thought and the lack of dialogue between researchers and industrials and consensus on guidelines to generate data make it harder to compare and reproduce results. This European Cooperation in Science and Technology (COST) Action aims to accelerate the understanding of transcriptomics in CVD and further the translation of experimental data into usable applications to improve personalized medicine in this field by creating an interdisciplinary network. It aims to provide opportunities for collaboration between stakeholders from complementary backgrounds, allowing the functions of different RNAs and their interactions to be more rapidly deciphered in the cardiovascular context for translation into the clinic, thus fostering personalized medicine and meeting a current public health challenge. Thus, this Action will advance studies on cardiovascular transcriptomics, generate innovative projects, and consolidate the leadership of European research groups in the field.COST (European Cooperation in Science and Technology) is a funding organization for research and innovation networks (www.cost.eu).

12.
Metabolites ; 9(3)2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30893827

ABSTRACT

The metabolism and performance of myocardial and skeletal muscle are impaired in heart failure (HF) patients. Exercise training improves the performance and benefits the quality of life in HF patients. The purpose of the present study was to determine the metabolic profiles in myocardial and skeletal muscle in HF and exercise training using MRS, and thus to identify targets for clinical MRS in vivo. After surgically establishing HF in rats, we randomized the rats to exercise training programs of different intensities. After the final training session, rats were sacrificed and tissues from the myocardial and skeletal muscle were extracted. Magnetic resonance spectra were acquired from these extracts, and principal component and metabolic enrichment analysis were used to assess the differences in metabolic profiles. The results indicated that HF affected myocardial metabolism by changing multiple metabolites, whereas it had a limited effect on skeletal muscle metabolism. Moreover, exercise training mainly altered the metabolite distribution in skeletal muscle, indicating regulation of metabolic pathways of taurine and hypotaurine metabolism and carnitine synthesis.

13.
Cardiovasc Toxicol ; 19(5): 422-431, 2019 10.
Article in English | MEDLINE | ID: mdl-30927207

ABSTRACT

Both human and animal studies have shown mitochondrial and contractile dysfunction in hearts of type 2 diabetes mellitus (T2DM). Exercise training has shown positive effects on cardiac function, but its effect on the mitochondria have been insufficiently explored. The aim of this study was to assess the effect of exercise training on mitochondrial function in T2DM hearts. We divided T2DM mice (db/db) into a sedentary and an interval training group at 8 weeks of age and used heterozygote db/+ as controls. After 8 weeks of training, we evaluated mitochondrial structure and function, as well as the levels of mRNA and proteins involved in key metabolic processes from the left ventricle. db/db animals showed decreased oxidative phosphorylation capacity and fragmented mitochondria. Mitochondrial respiration showed a blunted response to Ca2+ along with reduced protein levels of the mitochondrial calcium uniporter. Exercise training ameliorated the reduced oxidative phosphorylation in complex (C) I + II, CII and CIV, but not CI or Ca2+ response. Mitochondrial fragmentation was partially restored. mRNA levels of isocitrate, succinate and oxoglutarate dehydrogenase were increased in db/db mice and normalized by exercise training. Exercise training induced an upregulation of two transcripts of peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α1 and PGC1α4) previously linked to endurance training adaptations and strength training adaptations, respectively. The T2DM heart showed mitochondrial dysfunction at multiple levels and exercise training ameliorated some, but not all mitochondrial dysfunctions.


Subject(s)
Diabetes Mellitus, Type 2/therapy , Diabetic Cardiomyopathies/prevention & control , Energy Metabolism , High-Intensity Interval Training , Mitochondria, Heart/metabolism , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Gene Expression Regulation , Male , Mice, Mutant Strains , Mitochondria, Heart/ultrastructure , Signal Transduction , Time Factors , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
14.
PLoS One ; 13(12): e0208703, 2018.
Article in English | MEDLINE | ID: mdl-30533031

ABSTRACT

PURPOSE: Exercise training increases aerobic capacity and is beneficial for health, whereas low aerobic exercise capacity is a strong independent predictor of cardiovascular disease and premature death. The purpose of the present study was to determine the metabolic profiles in a rat model of inborn low versus high capacity runners (LCR/HCR) and to determine the effect of inborn aerobic capacity, aging, and exercise training on skeletal muscle metabolic profile. METHODS: LCR/HCR rats were randomized to high intensity low volume interval treadmill training twice a week or sedentary control for 3 or 11 months before they were sacrificed, at 9 and 18 months of age, respectively. Magnetic resonance spectra were acquired from soleus muscle extracts, and partial least square discriminative analysis was used to determine the differences in metabolic profile. RESULTS: Sedentary HCR rats had 54% and 30% higher VO2max compared to sedentary LCR rats at 9 months and 18 months, respectively. In HCR, exercise increased running speed significantly, and VO2max was higher at age of 9 months, compared to sedentary counterparts. In LCR, changes were small and did not reach the level of significance. The metabolic profile was significantly different in the LCR sedentary group compared to the HCR sedentary group at the age of 9 and 18 months, with higher glutamine and glutamate levels (9 months) and lower lactate level (18 months) in HCR. Irrespective of fitness level, aging was associated with increased soleus muscle concentrations of glycerophosphocholine and glucose. Interval training did not influence metabolic profiles in LCR or HCR rats at any age. CONCLUSION: Differences in inborn aerobic capacity gave the most marked contrasts in metabolic profile, there were also some changes with ageing. Low volume high intensity interval training twice a week had no detectable effect on metabolic profile.


Subject(s)
Aging/physiology , Muscle, Skeletal/metabolism , Physical Endurance/physiology , Running/physiology , Animals , Animals, Outbred Strains , Proton Magnetic Resonance Spectroscopy , Random Allocation , Rats , Sedentary Behavior , Species Specificity
15.
Interact Cardiovasc Thorac Surg ; 27(1): 95-101, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29447379

ABSTRACT

OBJECTIVES: During open-heart surgery, the myocardium experiences ischaemia-reperfusion injury. A single bout of moderate, 30-min exercise induces preconditioning and protects the heart from ischaemia-reperfusion injury in rats, but this has never been investigated in humans. We aimed to investigate whether 1 bout of moderate exercise 24 h prior to surgery protects against mitochondrial and cardiac damage. METHODS: Patients scheduled for elective coronary artery bypass were eligible for this pilot study. Twenty were included and randomized to the treadmill exercise group (the EX group, n = 10) 24 h preoperatively or to standard presurgical procedures (control n = 10). Right atrial (RA) and left ventricular (LV) biopsies were collected immediately before and as long as possible after aortic cross-clamping to assess the primary outcome of mitochondrial respiration by respirometry, in addition to reactive oxygen species production by fluorometry and apoptotic transcripts. Cardiac troponin T and creatine kinase myocardial brain were measured in plasma at arrival, before surgery and 6 and 24 h postoperatively. RESULTS: Mitochondrial respiration was lower in the EX group after surgery in the LV (Complex I -22%, P < 0.05 and maximal -23%, P < 0.05) and the right atrium (Complex I -25%, P < 0.05). Transcript level of the apoptosis-related marker caspase 3 was increased 1.5-fold in the LV prior to surgery in the EX group when compared with the control group, P < 0.05. Cardiac troponin T was 45% higher in the EX group than in the control group 6 h postoperatively (P = 0.03), although not significant when corrected for aortic cross-clamping time. CONCLUSIONS: Results indicate that exercise did not precondition the heart against surgery-related damage. Exercise may render the myocardium and mitochondria more vulnerable to perioperative damage. Clinical trials registration number: NCT00218985 (https://clinicaltrials.gov/ct2/show/NCT00218985).


Subject(s)
Coronary Artery Bypass/adverse effects , Coronary Artery Bypass/methods , Coronary Artery Disease/surgery , Exercise , Myocardial Reperfusion Injury/prevention & control , Aged , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Creatine Kinase, MB Form/blood , Elective Surgical Procedures , Female , Heart Ventricles/pathology , Humans , Male , Middle Aged , Mitochondria/pathology , Myocardium/pathology , Pilot Projects , Troponin T/blood
16.
ESC Heart Fail ; 5(3): 332-342, 2018 06.
Article in English | MEDLINE | ID: mdl-29431258

ABSTRACT

AIMS: Cellular processes in the heart rely mainly on studies from experimental animal models or explanted hearts from patients with terminal end-stage heart failure (HF). To address this limitation, we provide data on excitation contraction coupling, cardiomyocyte contraction and relaxation, and Ca2+ handling in post-myocardial-infarction (MI) patients at mid-stage of HF. METHODS AND RESULTS: Nine MI patients and eight control patients without MI (non-MI) were included. Biopsies were taken from the left ventricular myocardium and processed for further measurements with epifluorescence and confocal microscopy. Cardiomyocyte function was progressively impaired in MI cardiomyocytes compared with non-MI cardiomyocytes when increasing electrical stimulation towards frequencies that simulate heart rates during physical activity (2 Hz); at 3 Hz, we observed almost total breakdown of function in MI. Concurrently, we observed impaired Ca2+ handling with more spontaneous Ca2+ release events, increased diastolic Ca2+ , lower Ca2+ amplitude, and prolonged time to diastolic Ca2+ removal in MI (P < 0.01). Significantly reduced transverse-tubule density (-35%, P < 0.01) and sarcoplasmic reticulum Ca2+ adenosine triphosphatase 2a (SERCA2a) function (-26%, P < 0.01) in MI cardiomyocytes may explain the findings. Reduced protein phosphorylation of phospholamban (PLB) serine-16 and threonine-17 in MI provides further mechanisms to the reduced function. CONCLUSIONS: Depressed cardiomyocyte contraction and relaxation were associated with impaired intracellular Ca2+ handling due to impaired SERCA2a activity caused by a combination of alteration in the PLB/SERCA2a ratio and chronic dephosphorylation of PLB as well as loss of transverse tubules, which disrupts normal intracellular Ca2+ homeostasis and handling. This is the first study that presents these mechanisms from viable and intact cardiomyocytes isolated from the left ventricle of human hearts at mid-stage of post-MI HF.


Subject(s)
Calcium/metabolism , Heart Failure/etiology , Myocardial Contraction/physiology , Myocardial Infarction/complications , Myocytes, Cardiac/metabolism , Biopsy , Female , Heart Failure/metabolism , Heart Failure/pathology , Humans , Male , Microscopy, Confocal , Middle Aged , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocytes, Cardiac/pathology , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Stroke Volume/physiology
17.
PLoS One ; 12(3): e0173449, 2017.
Article in English | MEDLINE | ID: mdl-28273177

ABSTRACT

INTRODUCTION: Recent data from long-distance endurance participants suggest that cardiac function is impaired after completion. Existing data further indicate that right ventricular function is more affected than left ventricular function. The cellular mechanisms underpinning cardiac deterioration are limited and therefore the aim of this study was to examine cardiomyocyte and molecular responses of the right and left ventricle to an acute bout of exhaustive endurance exercise. MATERIALS AND METHODS: Male Sprague-Dawley rats were assigned to sedentary controls or acute exhaustive endurance exercise consisting of a 120 minutes long forced treadmill run. The contractile function and Ca2+ handling properties in isolated cardiomyocytes, protein expression levels of sarcoplasmic reticulum Ca2+-ATPase and phospholamban including two of its phosphorylated states (serine 16 and threonine 17), and the mitochondrial respiration in permeabilized cardiac muscle fibers were analyzed. RESULTS: The exercise group showed a significant reduction in cardiomyocyte fractional shortening (right ventricle 1 Hz and 3 Hz p<0.001; left ventricle 1 Hz p<0.05), intracellular Ca2+ amplitude (right ventricle 1 and 3 Hz p<0.001; left ventricle 1 Hz p<0.01 and 3 Hz p<0.05) and rate of diastolic Ca2+ decay (right ventricle 1 Hz p<0.001 and 3 Hz p<0.01; left ventricle 1 and 3 Hz p<0.01). Cardiomyocyte relaxation during diastole was only significantly prolonged at 3 Hz in the right ventricle (p<0.05) compared to sedentary controls. We found an increase in phosphorylation of phospholamban at serine 16 and threonine 17 in the left (p<0.05), but not the right, ventricle from exhaustively exercised animals. The protein expression levels of sarcoplasmic reticulum Ca2+-ATPase and phospholamban was not changed. Furthermore, we found a reduction in maximal oxidative phosphorylation and electron transport system capacities of mitochondrial respiration in the right (p<0.01 and p<0.05, respectively), but not the left ventricle from rats subjected to acute exhaustive treadmill exercise. CONCLUSION: Acute exhaustive treadmill exercise is associated with impairment of cardiomyocyte Ca2+ handling and mitochondrial respiration that causes depression in both contraction and diastolic relaxation of cardiomyocytes.


Subject(s)
Calcium/metabolism , Myocytes, Cardiac/metabolism , Physical Conditioning, Animal , Animals , Cell Membrane Permeability , Cell Respiration , Cells, Cultured , Heart/physiopathology , Male , Mitochondria, Heart/metabolism , Myocardial Contraction , Myocardium/metabolism , Rats , Rats, Sprague-Dawley
18.
J Appl Physiol (1985) ; 121(1): 212-20, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27231311

ABSTRACT

Several conditions of heart disease, including heart failure and diabetic cardiomyopathy, are associated with upregulation of cytosolic Ca(2+)/calmodulin-dependent protein kinase II (CaMKIIδC) activity. In the heart, CaMKIIδC isoform targets several proteins involved in intracellular Ca(2+) homeostasis. We hypothesized that high-intensity endurance training activates mechanisms that enable a rescue of dysfunctional cardiomyocyte Ca(2+) handling and thereby ameliorate cardiac dysfunction despite continuous and chronic elevated levels of CaMKIIδC CaMKIIδC transgenic (TG) and wild-type (WT) mice performed aerobic interval exercise training over 6 wk. Cardiac function was measured by echocardiography in vivo, and cardiomyocyte shortening and intracellular Ca(2+) handling were measured in vitro. TG mice had reduced global cardiac function, cardiomyocyte shortening (47% reduced compared with WT, P < 0.01), and impaired Ca(2+) homeostasis. Despite no change in the chronic elevated levels of CaMKIIδC, exercise improved global cardiac function, restored cardiomyocyte shortening, and reestablished Ca(2+) homeostasis to values not different from WT. The key features to explain restored Ca(2+) homeostasis after exercise training were increased L-type Ca(2+) current density and flux by 79 and 85%, respectively (P < 0.01), increased sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) function by 50% (P < 0.01), and reduced diastolic SR Ca(2+) leak by 73% (P < 0.01), compared with sedentary TG mice. In conclusion, exercise training improves global cardiac function as well as cardiomyocyte function in the presence of a maintained high CaMKII activity. The main mechanisms of exercise-induced improvements in TG CaMKIIδC mice are mediated via increased L-type Ca(2+) channel currents and improved SR Ca(2+) handling by restoration of SERCA2a function in addition to reduced diastolic SR Ca(2+) leak.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Cardiomyopathies/physiopathology , Homeostasis/physiology , Myocytes, Cardiac/physiology , Physical Conditioning, Animal/physiology , Physical Endurance/physiology , Animals , Calcium Channels, L-Type/metabolism , Cardiomyopathies/metabolism , Echocardiography/methods , Heart Failure/metabolism , Heart Failure/physiopathology , Mice , Mice, Transgenic , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
19.
Basic Res Cardiol ; 110(4): 44, 2015.
Article in English | MEDLINE | ID: mdl-26112154

ABSTRACT

Diabetes mellitus (DM) increases the risk of heart failure after myocardial infarction (MI), and aggravates ventricular arrhythmias in heart failure patients. Although exercise training improves cardiac function in heart failure, it is still unclear how it benefits the diabetic heart after MI. To study the effects of aerobic interval training on cardiac function, susceptibility to inducible ventricular arrhythmias and cardiomyocyte calcium handling in DM mice after MI (DM-MI). Male type 2 DM mice (C57BLKS/J Lepr (db) /Lepr (db) ) underwent MI or sham surgery. One group of DM-MI mice was submitted to aerobic interval training running sessions during 6 weeks. Cardiac function and structure were assessed by echocardiography and magnetic resonance imaging, respectively. Ventricular arrhythmias were induced by high-frequency cardiac pacing in vivo. Protein expression was measured by Western blot. DM-MI mice displayed increased susceptibility for inducible ventricular arrhythmias and impaired diastolic function when compared to wild type-MI, which was associated with disruption of cardiomyocyte calcium handling and increased calcium leak from the sarcoplasmic reticulum. High-intensity exercise recovered cardiomyocyte function in vitro, reduced sarcoplasmic reticulum diastolic calcium leak and significantly reduced the incidence of inducible ventricular arrhythmias in vivo in DM-MI mice. Exercise training also normalized the expression profile of key proteins involved in cardiomyocyte calcium handling, suggesting a potential molecular mechanism for the benefits of exercise in DM-MI mice. High-intensity aerobic exercise training recovers cardiomyocyte function and reduces inducible ventricular arrhythmias in infarcted diabetic mice.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Diabetes Mellitus, Type 2/complications , Myocardial Infarction/complications , Physical Conditioning, Animal , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardial Contraction , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/physiology , Ventricular Function, Left
20.
Med Sci Sports Exerc ; 47(12): 2504-12, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26057940

ABSTRACT

PURPOSE: Exercise training reduces pathological remodeling and improves cardiac function in ischemic heart failure; however, causal mechanisms underlying the cardiac benefits of exercise are poorly understood. Because opening of adenosine triphosphate (ATP)-sensitive K ⁺(KATP) channels protects the heart during myocardial stress, we hypothesized that such a mechanism is responsible for some of the cardiac benefits induced by exercise in postinfarction chronic heart failure (CHF). METHODS: Left ventricular myocytes were isolated from three groups of rats: Sham, CHF Tr (4 wk after myocardial infarction, rats underwent 8 wk of aerobic interval training 5 d·wk⁻¹) and CHF Sed (rats sedentary for 12 wk after infarction). Cardiomyocyte survival after oxidative stress exposure (200 µM H2O2) and calcium handling (cells loaded with Fura-2 AM and electrically paced at 1 Hz) were assessed in the presence of KATP channel inhibitor glibenclamide. Expression of KATP subunits (SUR2A and Kir6.2) was evaluated using immunoblotting. RESULTS: Exercise improved cardiac function in CHF Tr animals. Cardiomyocytes from CHF Sed rats were more susceptible to oxidative stress-induced cell death than CHF Tr and Sham cardiomyocytes, with glibenclamide completely abolishing the protective effect of exercise. Glibenclamide did not affect cardiomyocyte survival in Sham or CHF Sed rats. In addition, exercise increased the systolic Ca²âº transient amplitude and improved diastolic Ca²âº removal in CHF Tr cardiomyocytes (compared with CHF Sed); both were significantly attenuated by glibenclamide. Exercise resulted in increased expression of KATP channel subunits in CHF Tr hearts, with more pronounced and significant effect on SUR2A. CONCLUSIONS: Our data suggest that KATP channel upregulation induced by chronic exercise likely mediates some of exercise-induced beneficial effects on cardiac function in postischemic heart failure.


Subject(s)
Heart Failure/metabolism , KATP Channels/metabolism , Physical Conditioning, Animal , Animals , Calcium/metabolism , Cytosol/metabolism , Female , Heart Failure/physiopathology , Myocardial Contraction , Myocytes, Cardiac/metabolism , Oxidative Stress , Rats, Sprague-Dawley , Up-Regulation , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...