Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(21): 7898-7905, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35587049

ABSTRACT

A rectangular DNA origami structure is one of the most studied and often used motif for applications in DNA nanotechnology. Here, we present two assays to study structural changes in DNA nanostructures and reveal a reversible rolling-up of the rectangular DNA origami structure induced by bivalent cations such as magnesium or calcium. First, we applied one-color and two-color superresolution DNA-PAINT with protruding strands along the long edges of the DNA origami rectangle. At increasing salt concentration, a single line instead of two lines is observed as a first indicator of rolling-up. Two-color measurements also revealed different conformations with parallel and angled edges. Second, we placed a gold nanoparticle and a dye molecule at different positions on the DNA origami structure. Distance dependent fluorescence quenching by the nanoparticle reports on dynamic transitions as well as it provides evidence that the rolling-up occurs preferentially along the diagonal of the DNA origami rectangle. The results will be helpful to test DNA structural models and the assays presented will be useful to study further structural transitions in DNA nanotechnology.


Subject(s)
Metal Nanoparticles , Nanostructures , DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Nucleic Acid Conformation
2.
ACS Nano ; 15(3): 5109-5117, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33660975

ABSTRACT

We present a technique to determine the orientation of single fluorophores attached to DNA origami structures based on two measurements. First, the orientation of the absorption transition dipole of the molecule is determined through a polarization-resolved excitation measurement. Second, the orientation of the DNA origami structure is obtained from a DNA-PAINT nanoscopy measurement. Both measurements are performed consecutively on a fluorescence wide-field microscope. We employed this approach to study the orientation of single ATTO 647N, ATTO 643, and Cy5 fluorophores covalently attached to a 2D rectangular DNA origami structure with different nanoenvironments, achieved by changing both the fluorophores' binding position and immediate vicinity. Our results show that when fluorophores are incorporated with additional space, for example, by omitting nucleotides in an elsewise double-stranded environment, they tend to stick to the DNA and to adopt a preferred orientation that depends more on the specific molecular environment than on the fluorophore type. With the aid of all-atom molecular dynamics simulations, we rationalized our observations and provide insight into the fluorophores' probable binding modes. We believe this work constitutes an important step toward manipulating the orientation of single fluorophores in DNA origami structures, which is vital for the development of more efficient and reproducible self-assembled nanophotonic devices.


Subject(s)
DNA , Fluorescent Dyes , Microscopy, Fluorescence , Molecular Dynamics Simulation
3.
Nano Lett ; 19(9): 6629-6634, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31449421

ABSTRACT

We demonstrate the capability of DNA self-assembled optical antennas to direct the emission of an individual fluorophore, which is free to rotate. DNA origami is used to fabricate optical antennas composed of two colloidal gold nanoparticles separated by a predefined gap and to place a single Cy5 fluorophore near the gap center. Although the fluorophore is able to rotate, its excitation and far-field emission is mediated by the antenna, with the emission directionality following a dipolar pattern according to the antenna main resonant mode. This work is intended to set out the basis for manipulating the emission pattern of single molecules with self-assembled optical antennas based on colloidal nanoparticles.


Subject(s)
Carbocyanines/chemistry , DNA/chemistry , Fluorescent Dyes/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry
4.
Small ; 15(26): e1804418, 2019 06.
Article in English | MEDLINE | ID: mdl-30734483

ABSTRACT

DNA self-assembly is a powerful tool to arrange optically active components with high accuracy in a large parallel manner. A facile approach to assemble plasmonic antennas consisting of two metallic nanoparticles (40 nm) with a single colloidal quantum dot positioned at the hot spot is presented here. The design approach is based on DNA complementarity, stoichiometry, and steric hindrance principles. Since no intermediate molecules other than short DNA strands are required, the structures possess a very small gap (≈ 5 nm) which is desired to achieve high Purcell factors and plasmonic enhancement. As a proof-of-concept, the fluorescence emission from antennas assembled with both conventional and ultrasmooth spherical gold particles is measured. An increase in fluorescence is obtained, up to ≈30-fold, compared to quantum dots without antenna.


Subject(s)
DNA/chemistry , Fluorescence , Metal Nanoparticles/chemistry , Quantum Dots/chemistry , Nanotechnology/methods
5.
Nano Lett ; 16(10): 6236-6244, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27629492

ABSTRACT

There is a continuous demand for imaging probes offering excellent performance in various microscopy techniques for comprehensive investigations of cellular processes by more than one technique. Fluorescent nanodiamond-gold nanoparticles (FND-Au) constitute a new class of "all-in-one" hybrid particles providing unique features for multimodal cellular imaging including optical imaging, electron microscopy, and, and potentially even quantum sensing. Confocal and optical coherence microscopy of the FND-Au allow fast investigations inside living cells via emission, scattering, and photothermal imaging techniques because the FND emission is not quenched by AuNPs. In electron microscopy, transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) analysis of FND-Au reveals greatly enhanced contrast due to the gold particles as well as an extraordinary flickering behavior in three-dimensional cellular environments originating from the nanodiamonds. The unique multimodal imaging characteristics of FND-Au enable detailed studies inside cells ranging from statistical distributions at the entire cellular level (micrometers) down to the tracking of individual particles in subcellular organelles (nanometers). Herein, the processes of endosomal membrane uptake and release of FNDs were elucidated for the first time by the imaging of individual FND-Au hybrid nanoparticles with single-particle resolution. Their convenient preparation, the availability of various surface groups, their flexible detection modalities, and their single-particle contrast in combination with the capability for endosomal penetration and low cytotoxicity make FND-Au unique candidates for multimodal optical-electronic imaging applications with great potential for emerging techniques, such as quantum sensing inside living cells.


Subject(s)
Gold , Metal Nanoparticles , Microscopy, Electron, Transmission , Multimodal Imaging , Nanodiamonds , A549 Cells , Animals , Endocytosis , HeLa Cells , Humans , Macrophages/ultrastructure , Mice , Microscopy, Confocal , Microscopy, Fluorescence , Organelles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...