Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Anaesthesiologie ; 72(10): 710-718, 2023 Oct.
Article in German | MEDLINE | ID: mdl-37584731

ABSTRACT

BACKGROUND: Critical infrastructure (CRITIS) in hospitals has become the focus of resilience research due to the impact of the COVID-19 pandemic and also the events in Ukraine. This foundational research examines overall contexts, categorizing and quantifying them. Previous research examined limited scale damage situations with little CRITIS involvement: Worst case studies are missing. The vulnerabilities of the CRITIS of one or more countries will likewise be a prime target for attack in current and future conflicts or criminal extortion, this is especially true in the healthcare sector. Therefore, detailed research with a black swan scenario is necessary in this field. OBJECTIVE: The aim of the study was to create and validate a categorized and weighted model for the self-assessment of the resilience of critical infrastructure in German hospitals at different levels of care before the exemplary scenario of a prolonged supraregional power blackout. MATERIAL AND METHODS: Using an explorative design, experts from 8 hospitals of different care levels performed an expert-based qualitative system analysis to develop, weight and test the model. The resilience index was then calculated using adapted interdependence analyses in a Vester influence matrix. RESULTS: A total of 7 categories and 24 subcategories of hospital CRITIS were identified. There are several key elements: rank 1 of active elements is the emergency power system (E1), and for passive elements, it is the nursing staff (P2). This means that the emergency power system has the greatest impact on all other areas and the nursing staff are most dependent on all others for their work. The most critical elements, because they are most intertwined in the overall system, are the situation center/command staff (Z1) and technical staff (P3), on which the entire system depends. From the weighted individual elements of CRITIS, an overall resilience for a hospital can be calculated (resilience index). The developed model can be used by hospital crisis experts as part of a self-assessment to provide a basis for risk management, financial planning, technical planning, personnel planning or crisis and disaster management. CONCLUSION: The categorization and quantification of critical infrastructure (CRITIS) in hospitals with the aim of resilience documentation and optimization is possible. The model that has been developed allows rapid adaptation to changing initial situations and increases in resilience that can be realized in the short and medium term. Emergency and crisis preparedness is a dynamic process, which has been combined here with the further development of critical infrastructure. Consequently, there can be no final state to be achieved but only a certain best possible framework within which the hospital as a business enterprise can operate. The classification of the categories in the model must also be constantly further developed and adapted to the current status. Once the explorative and qualitative basic research has been completed, it is necessary in a further step to subject the model, which has been validated by experts, to a broader review. Ideally, this will be done using quantitative methods and a significantly larger sample.

2.
Sci Rep ; 6: 32525, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27585648

ABSTRACT

Climate change and stagnating crop yields may cause a decline of SOC stocks in agricultural soils leading to considerable CO2 emissions and reduced agricultural productivity. Regional model-based SOC projections are needed to evaluate these potential risks. In this study, we simulated the future SOC development in cropland and grassland soils of Bavaria in the 21(st) century. Soils from 51 study sites representing the most important soil classes of Central Europe were fractionated and derived SOC pools were used to initialize the RothC soil carbon model. For each site, long-term C inputs were determined using the C allocation method. Model runs were performed for three different C input scenarios as a realistic range of projected yield development. Our modelling approach revealed substantial SOC decreases of 11-16% under an expected mean temperature increase of 3.3 °C assuming unchanged C inputs. For the scenario of 20% reduced C inputs, agricultural SOC stocks are projected to decline by 19-24%. Remarkably, even the optimistic scenario of 20% increased C inputs led to SOC decreases of 3-8%. Projected SOC changes largely differed among investigated soil classes. Our results indicated that C inputs have to increase by 29% to maintain present SOC stocks in agricultural soils.

3.
Sci Total Environ ; 536: 1045-1051, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26235605

ABSTRACT

The carbon (C) balance of agricultural soils may be largely affected by climate change. Increasing temperatures are discussed to cause a loss of soil organic carbon (SOC) due to enhanced decomposition of soil organic matter, which has a high intrinsic temperature sensitivity. On the other hand, several modeling studies assumed that potential SOC losses would be compensated or even outperformed by an increased C input by crop residues into agricultural soils. This assumption was based on a predicted general increase of net primary productivity (NPP) as a result of the CO2 fertilization effect and prolonged growing seasons. However, it is questionable if the crop C input into agricultural soils can be derived from NPP predictions of vegetation models. The C input in European croplands is largely controlled by the agricultural management and was strongly related to the development of crop yields in the last decades. Thus, a glance at past yield development will probably be more instructive for future estimations of the C input than previous modeling approaches based on NPP predictions. An analysis of European yield statistics indicated that yields of wheat, barley and maize are stagnating in Central and Northern Europe since the 1990s. The stagnation of crop yields can probably be related to a fundamental change of the agricultural management and to climate change effects. It is assumed that the soil C input is concurrently stagnating which would necessarily lead to a decrease of agricultural SOC stocks in the long-term given a constant temperature increase. Remarkably, for almost all European countries that are faced with yield stagnation indications for agricultural SOC decreases were already found. Potentially adverse effects of yield stagnation on the C balance of croplands call for an interdisciplinary investigation of its causes and a comprehensive monitoring of SOC stocks in agricultural soils of Europe.


Subject(s)
Agriculture/methods , Carbon Cycle , Crops, Agricultural , Soil/chemistry , Environmental Monitoring
4.
Glob Chang Biol ; 20(2): 653-65, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24038905

ABSTRACT

Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.


Subject(s)
Agriculture , Carbon Sequestration , Ecosystem , Soil/chemistry , Carbon/analysis , Germany
SELECTION OF CITATIONS
SEARCH DETAIL
...