Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6734, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872158

ABSTRACT

Materials that break multiple symmetries allow the formation of four-fermion condensates above the superconducting critical temperature (Tc). Such states can be stabilized by phase fluctuations. Recently, a fermionic quadrupling condensate that breaks the Z2 time-reversal symmetry was reported in Ba1-xKxFe2As2. A phase transition to the new state of matter should be accompanied by a specific heat anomaly at the critical temperature where Z2 time-reversal symmetry is broken ([Formula: see text]). Here, we report on detecting two anomalies in the specific heat of Ba1-xKxFe2As2 at zero magnetic field. The anomaly at the higher temperature is accompanied by the appearance of a spontaneous Nernst effect, indicating the breakdown of Z2 symmetry. The second anomaly at the lower temperature coincides with the transition to a zero-resistance state, indicating the onset of superconductivity. Our data provide the first example of the appearance of a specific heat anomaly above the superconducting phase transition associated with the broken time-reversal symmetry due to the formation of the novel fermion order.

2.
Materials (Basel) ; 16(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37687729

ABSTRACT

Substrate-induced strains can significantly influence the structural properties of epitaxial thin films. In ferroelectrics, this might lead to significant changes in the functional properties due to the strong electromechanical coupling in those materials. To study this in more detail, epitaxial Ba0.7Sr0.3TiO3 films, which have a perovskite structure and a structural phase transition close to room temperature, were grown with different thicknesses on REScO3 (RE-rare earth element) substrates having a smaller lattice mismatch compared to SrTiO3. A fully strained SrRuO3 bottom electrode and Pt top contacts were used to achieve a capacitor-like architecture. Different X-ray diffraction techniques were applied to study the microstructure of the films. Epitaxial films with a higher crystalline quality were obtained on scandates in comparison to SrTiO3, whereas the strain state of the functional layer was strongly dependent on the chosen substrate and the thickness. Differences in permittivity and a non-linear polarization behavior were observed at higher temperatures, suggesting that ferroelectricity is supressed under tensile strain conditions in contrast to compressive strain for our measurement configuration, while a similar reentrant relaxor-like behavior was found in all studied layers below 0°C.

3.
ACS Nano ; 17(3): 2517-2528, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36651833

ABSTRACT

Colossal magnetoresistance is of great fundamental and technological significance in condensed-matter physics, magnetic memory, and sensing technologies. However, its relatively narrow working temperature window is still a severe obstacle for potential applications due to the nature of the material-inherent phase transition. Here, we realized hierarchical La0.7Sr0.3MnO3 thin films with well-defined (001) and (221) crystallographic orientations by combining substrate modification with conventional thin-film deposition. Microscopic investigations into its magnetic transition through electron holography reveal that the hierarchical microstructure significantly broadens the temperature range of the ferromagnetic-paramagnetic transition, which further widens the response temperature range of the macroscopic colossal magnetoresistance under the scheme of the double-exchange mechanism. Therefore, this work puts forward a method to alter the magnetic transition and thus to extend the magnetoresistance working window by nanoengineering, which might be a promising approach also for other phase-transition-related effects in functional oxides.

4.
Materials (Basel) ; 15(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955286

ABSTRACT

We report the local structural and superconducting properties of undoped and Ag-doped YBa2Cu3O6+x (YBCO) films with a thickness of up to 1 µm prepared by pulsed laser deposition on SrTiO3 (STO) single crystals and on ion-beam-assisted deposition (IBAD) and rolling-assisted biaxially textured substrate (RABiTS)-based metal templates. X-ray diffraction demonstrates the high crystalline quality of the films on both single crystalline substrates and metal-based templates, respectively. Although there was only a slight decrease in Tc of up to 1.5 K for the Ag-doped YBCO films on all substrates, we found significant changes in their transport characteristics. The effect of the silver doping mainly depended on the concentration of silver, the type of substrate, and the temperature and magnetic field. In general, the greatest improvement in Jc over a wide range of magnetic fields and temperatures was observed for the 5%Ag-doped YBCO films on STO substrates, showing a significant increase compared to undoped films. Furthermore, a slight Jc improvement was observed for the 2%Ag-doped YBCO films on the RABiTS templates at temperatures below 65 K, whereas Jc decreased for the Ag-doped films on IBAD-MgO-based templates compared to undoped YBCO films. Using detailed electron microscopy studies, small changes in the local microstructure of the Ag-doped YBCO films were revealed; however, no clear correlation was found with the transport properties of the films.

5.
Materials (Basel) ; 13(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023853

ABSTRACT

We performed a detailed structural, magnetotransport, and superconducting analysis of thin epitaxial Ba(Fe1-xNix)2As2 films with Ni doping of x = 0.05 and 0.08, as prepared by pulsed laser deposition. X-ray diffraction studies demonstrate the high crystalline perfection of the films, which have a similar quality to single crystals. Furthermore, magnetotransport measurements of the films were performed in magnetic fields up to 9 T. The results we used to estimate the density of electronic states at the Fermi level, the coefficient of electronic heat capacity, and other electronic parameters for this compound, in their dependence on the dopant concentration within the framework of the Ginzburg-Landau-Abrikosov-Gorkov theory. The comparison of the determined parameters with measurement data on comparable Ba(Fe1-xNix)2As2 single crystals shows good agreement, which confirms the high quality of the obtained films.

6.
Sci Rep ; 7(1): 14462, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29089554

ABSTRACT

Tuning functional properties of thin caloric films by mechanical stress is currently of high interest. In particular, a controllable magnetisation or transition temperature is desired for improved usability in magnetocaloric devices. Here, we present results of epitaxial magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg1/3Nb2/3)0.72Ti0.28O3 (PMN-PT) substrates. Utilizing X-ray diffraction measurements, we demonstrate that the strain induced in the substrate by application of an electric field can be transferred to the thin film, resulting in a change of the lattice parameters. We examined the consequences of this strain on the magnetic properties of the thin film by temperature- and electric field-dependent measurements. We did not observe a change of martensitic transformation temperature but a reversible change of magnetisation within the austenitic state, which we attribute to the intrinsic magnetic instability of this metamagnetic Heusler alloy. We demonstrate an electric field-controlled entropy change of about 31 % of the magnetocaloric effect - without any hysteresis.

7.
Nature ; 547(7663): 324-327, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28726829

ABSTRACT

The conservation laws, such as those of charge, energy and momentum, have a central role in physics. In some special cases, classical conservation laws are broken at the quantum level by quantum fluctuations, in which case the theory is said to have quantum anomalies. One of the most prominent examples is the chiral anomaly, which involves massless chiral fermions. These particles have their spin, or internal angular momentum, aligned either parallel or antiparallel with their linear momentum, labelled as left and right chirality, respectively. In three spatial dimensions, the chiral anomaly is the breakdown (as a result of externally applied parallel electric and magnetic fields) of the classical conservation law that dictates that the number of massless fermions of each chirality are separately conserved. The current that measures the difference between left- and right-handed particles is called the axial current and is not conserved at the quantum level. In addition, an underlying curved space-time provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, but this anomaly has yet to be confirmed experimentally. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat space-time, suggesting that such types of mixed anomaly could be experimentally probed in condensed matter systems known as Weyl semimetals. Here, using a temperature gradient, we observe experimentally a positive magneto-thermoelectric conductance in the Weyl semimetal niobium phosphide (NbP) for collinear temperature gradients and magnetic fields that vanishes in the ultra-quantum limit, when only a single Landau level is occupied. This observation is consistent with the presence of a mixed axial-gravitational anomaly, providing clear evidence for a theoretical concept that has so far eluded experimental detection.

8.
Sci Rep ; 7: 43394, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262790

ABSTRACT

NbP is a recently realized Weyl semimetal (WSM), hosting Weyl points through which conduction and valence bands cross linearly in the bulk and exotic Fermi arcs appear. The most intriguing transport phenomenon of a WSM is the chiral anomaly-induced negative magnetoresistance (NMR) in parallel electric and magnetic fields. In intrinsic NbP the Weyl points lie far from the Fermi energy, making chiral magneto-transport elusive. Here, we use Ga-doping to relocate the Fermi energy in NbP sufficiently close to the W2 Weyl points, for which the different Fermi surfaces are verified by resultant quantum oscillations. Consequently, we observe a NMR for parallel electric and magnetic fields, which is considered as a signature of the chiral anomaly in condensed-matter physics. The NMR survives up to room temperature, making NbP a versatile material platform for the development of Weyltronic applications.

9.
Nat Commun ; 8: 13985, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28045029

ABSTRACT

Magnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50-fold reduction of the writing threshold compared with ferromagnet-based counterparts, is robust against magnetic disturbances and exhibits no ferromagnetic hysteresis losses. Using the magnetoelectric antiferromagnet Cr2O3, we demonstrate reliable isothermal switching via gate voltage pulses and all-electric readout at room temperature. As no ferromagnetic component is present in the system, the writing magnetic field does not need to be pulsed for readout, allowing permanent magnets to be used. Based on our prototypes, we construct a comprehensive model of the magnetoelectric selection mechanisms in thin films of magnetoelectric antiferromagnets, revealing misfit induced ferrimagnetism as an important factor. Beyond memory applications, the AF-MERAM concept introduces a general all-electric interface for antiferromagnets and should find wide applicability in antiferromagnetic spintronics.

10.
Nano Lett ; 16(9): 5785-91, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27574953

ABSTRACT

Elastic strain fields based on single crystal piezoelectric elements represent an effective way for engineering the quantum dot (QD) emission with unrivaled precision and technological relevance. However, pioneering researches in this direction were mainly based on bulk piezoelectric substrates, which prevent the development of chip-scale devices. Here, we present a monolithically integrated Microelectromechanical systems (MEMS) device with great potential for on-chip quantum photonic applications. High-quality epitaxial PMN-PT thin films have been grown on SrTiO3 buffered Si and show excellent piezoelectric responses. Dense arrays of MEMS with small footprints are then fabricated based on these films, forming an on-chip strain tuning platform. After transferring the QD-containing nanomembranes onto these MEMS, the nonclassical emissions (e.g., single photons) from single QDs can be engineered by the strain fields. We envision that the strain tunable QD sources on the individually addressable and monolithically integrated MEMS pave the way toward complex quantum photonic applications on chip.

11.
Sci Rep ; 6: 28390, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27328948

ABSTRACT

The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1-xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system.

12.
Sci Rep ; 6: 21188, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26887291

ABSTRACT

The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O(7-δ) (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m(3) at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.

13.
Sci Rep ; 5: 17363, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26612567

ABSTRACT

In general, the critical current density, Jc, of type II superconductors and its anisotropy with respect to magnetic field orientation is determined by intrinsic and extrinsic properties. The Fe-based superconductors of the '122' family with their moderate electronic anisotropies and high yet accessible critical fields (Hc2 and Hirr) are a good model system to study this interplay. In this paper, we explore the vortex matter of optimally Co-doped BaFe2As2 thin films with extended planar and c-axis correlated defects. The temperature and angular dependence of the upper critical field is well explained by a two-band model in the clean limit. The dirty band scenario, however, cannot be ruled out completely. Above the irreversibility field, the flux motion is thermally activated, where the activation energy U0 is going to zero at the extrapolated zero-kelvin Hirr value. The anisotropy of the critical current density Jc is both influenced by the Hc2 anisotropy (and therefore by multi-band effects) as well as the extended planar and columnar defects present in the sample.

14.
Sci Rep ; 5: 16334, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26548645

ABSTRACT

Thin film growth of iron chalcogenides by pulsed laser deposition (PLD) is still a delicate issue in terms of simultaneous control of stoichiometry, texture, substrate/film interface properties, and superconducting properties. The high volatility of the constituents sharply limits optimal deposition temperatures to a narrow window and mainly challenges reproducibility for vacuum based methods. In this work we demonstrate the beneficial introduction of a semiconducting FeSe(1-x)Te(x) seed layer for subsequent homoepitaxial growth of superconducting FeSe(1-x)Te(x) thin film on MgO substrates. MgO is one of the most favorable substrates used in superconducting thin film applications, but the controlled growth of iron chalcogenide thin films on MgO has not yet been optimized and is the least understood. The large mismatch between the lattice constants of MgO and FeSe(1-x)Te(x) of about 11% results in thin films with a mixed texture, that prevents further accurate investigations of a correlation between structural and electrical properties of FeSe(1-x)Te(x). Here we present an effective way to significantly improve epitaxial growth of superconducting FeSe(1-x)Te(x) thin films with reproducible high critical temperatures (≥17 K) at reduced deposition temperatures (200 °C-320 °C) on MgO using PLD. This offers a broad scope of various applications.

15.
Nanomaterials (Basel) ; 2(3): 251-267, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-28348306

ABSTRACT

This work describes various combinations of cleaning methods involved in the preparation of Ni-5% W substrates for the deposition of buffer layers using water-based solvents. The substrate has been studied for its surface properties using X-ray photoelectron spectroscopy (XPS). The contaminants in the substrates have been quantified and the appropriate cleaning method was chosen in terms of contaminants level and showing good surface crystallinity to further consider them for depositing chemical solution-based buffer layers for Y1Ba2Cu3Oy (YBCO) coated conductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...