Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38761999

ABSTRACT

Inflammatory skin diseases such as atopic eczema (atopic dermatitis [AD]) affect children and adults globally. In AD, the skin barrier is impaired on multiple levels. Underlying factors include genetic, chemical, immunologic, and microbial components. Increased skin pH in AD is part of the altered microbial microenvironment that promotes overgrowth of the skin microbiome with Staphylococcus aureus. The secretion of virulence factors, such as toxins and proteases, by S aureus further aggravates the skin barrier deficiency and additionally disrupts the balance of an already skewed immune response. Skin commensal bacteria, however, can inhibit the growth and pathogenicity of S aureus through quorum sensing. Therefore, restoring a healthy skin microbiome could contribute to remission induction in AD. This review discusses direct and indirect approaches to targeting the skin microbiome through modulation of the skin pH; UV treatment; and use of prebiotics, probiotics, and postbiotics. Furthermore, exploratory techniques such as skin microbiome transplantation, ozone therapy, and phage therapy are discussed. Finally, we summarize the latest findings on disease and microbiome modification through targeted immunomodulatory systemic treatments and biologics. We believe that targeting the skin microbiome should be considered a crucial component of successful AD treatment in the future.

2.
JAMA Oncol ; 10(4): 516-521, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38300584

ABSTRACT

Importance: The interindividual differences in severity of acute radiation dermatitis are not well understood. To date, the pathomechanism and interplay of microbiome and radiodermatitis before and during treatment remain largely unknown. Objective: To assess the association of skin microbiome baseline composition and dynamics with severity of radiodermatitis in patients undergoing adjuvant radiotherapy for breast cancer. Design, Setting, and Participants: A longitudinal prospective pilot observational study was conducted between January 2017 and January 2019. Sequencing results were received in March 2021, and the data were analyzed from August 2021 to March 2023. This study was performed at an urban academic university cancer center. A total of 21 female patients with breast cancer after surgery were consecutively approached, of which 1 patient withdrew consent before the study started. Exposure: Adjuvant radiotherapy for breast cancer for 7 weeks. Main Outcomes and Measures: The main outcome was the association of baseline skin microbiome composition and its dynamics with the severity of radiodermatitis. A total of 360 skin microbiome samples from patients were analyzed, taken before, during, and after radiotherapy, from both the treated and contralateral healthy sides. The skin microbiome samples were analyzed using 16S (V1-V3) amplicon sequencing and quantitative polymerase chain reaction bacterial enumeration. Results: Twenty female patients with breast cancer after surgery who underwent radiotherapy enrolled in the study had a median (range) age of 61 (37-81) years. The median (range) body mass index of the patients was 24.2 (17.6-38.4). The 16S sequencing revealed that low (<5%) relative abundance of commensal skin bacteria (Staphylococcus epidermidis, Staphylococcus hominis, Cutibacterium acnes) at baseline composition was associated with the development of severe radiodermatitis with an accuracy of 100% (sensitivity and specificity of 100%, P < .001). Furthermore, in patients with severe radiodermatitis, quantitative polymerase chain reaction bacterial enumeration revealed a general non-species-specific overgrowth of skin bacterial load before the onset of severe symptoms. Subsequently, the abundance of commensal bacteria increased in severe radiodermatitis, coinciding with a decline in total bacterial load. Conclusions and Relevance: The findings of this observational study indicated a potential mechanism associated with the skin microbiome for the pathogenesis of severe radiodermatitis, which may be a useful biomarker for personalized prevention of radiodermatitis in patients undergoing adjuvant radiotherapy for breast cancer.


Subject(s)
Breast Neoplasms , Radiodermatitis , Aged , Aged, 80 and over , Female , Humans , Middle Aged , Breast Neoplasms/pathology , Prospective Studies , Radiodermatitis/etiology , Radiodermatitis/prevention & control , Radiotherapy, Adjuvant/adverse effects , Skin/pathology , Adult
3.
BMC Biol ; 21(1): 269, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996810

ABSTRACT

BACKGROUND: Microbiome analysis is becoming a standard component in many scientific studies, but also requires extensive quality control of the 16S rRNA gene sequencing data prior to analysis. In particular, when investigating low-biomass microbial environments such as human skin, contaminants distort the true microbiome sample composition and need to be removed bioinformatically. We introduce MicrobIEM, a novel tool to bioinformatically remove contaminants using negative controls. RESULTS: We benchmarked MicrobIEM against five established decontamination approaches in four 16S rRNA amplicon sequencing datasets: three serially diluted mock communities (108-103 cells, 0.4-80% contamination) with even or staggered taxon compositions and a skin microbiome dataset. Results depended strongly on user-selected algorithm parameters. Overall, sample-based algorithms separated mock and contaminant sequences best in the even mock, whereas control-based algorithms performed better in the two staggered mocks, particularly in low-biomass samples (≤ 106 cells). We show that a correct decontamination benchmarking requires realistic staggered mock communities and unbiased evaluation measures such as Youden's index. In the skin dataset, the Decontam prevalence filter and MicrobIEM's ratio filter effectively reduced common contaminants while keeping skin-associated genera. CONCLUSIONS: MicrobIEM's ratio filter for decontamination performs better or as good as established bioinformatic decontamination tools. In contrast to established tools, MicrobIEM additionally provides interactive plots and supports selecting appropriate filtering parameters via a user-friendly graphical user interface. Therefore, MicrobIEM is the first quality control tool for microbiome experts without coding experience.


Subject(s)
Bacteria , Microbiota , Humans , Bacteria/genetics , Benchmarking , RNA, Ribosomal, 16S/genetics , Decontamination , Microbiota/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
4.
Biomolecules ; 13(7)2023 06 23.
Article in English | MEDLINE | ID: mdl-37509067

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin disease with a microbiome dysbiosis towards a high relative abundance of Staphylococcus aureus. However, information is missing on the actual bacterial load on AD skin, which may affect the cell number driven release of pathogenic factors. Here, we combined the relative abundance results obtained by next-generation sequencing (NGS, 16S V1-V3) with bacterial quantification by targeted qPCR (total bacterial load = 16S, S. aureus = nuc gene). Skin swabs were sampled cross-sectionally (n = 135 AD patients; n = 20 healthy) and longitudinally (n = 6 AD patients; n = 6 healthy). NGS and qPCR yielded highly inter-correlated S. aureus relative abundances and S. aureus cell numbers. Additionally, intra-individual differences between body sides, skin status, and consecutive timepoints were also observed. Interestingly, a significantly higher total bacterial load, in addition to higher S. aureus relative abundance and cell numbers, was observed in AD patients in both lesional and non-lesional skin, as compared to healthy controls. Moreover, in the lesional skin of AD patients, higher S. aureus cell numbers significantly correlated with the higher total bacterial load. Furthermore, significantly more severe AD patients presented with higher S. aureus cell number and total bacterial load compared to patients with mild or moderate AD. Our results indicate that severe AD patients exhibit S. aureus driven increased bacterial skin colonization. Overall, bacterial quantification gives important insights in addition to microbiome composition by sequencing.


Subject(s)
Dermatitis, Atopic , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Dermatitis, Atopic/genetics , Skin/microbiology , Bacteria
5.
Microbiol Resour Announc ; 11(4): e0007222, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35258326

ABSTRACT

Staphylococcus aureus is a widely distributed, opportunistic pathogen and has been linked to the human skin disease atopic dermatitis (AD). Here, we present 44 complete and 4 draft genome sequences of S. aureus strains isolated from the nose and skin of AD patients and healthy controls from a German study cohort.

6.
Handb Exp Pharmacol ; 268: 53-65, 2022.
Article in English | MEDLINE | ID: mdl-34228203

ABSTRACT

Over the last few decades, allergic diseases have been steadily increasing worldwide, a phenomenon that is not yet completely understood. Recent evidence, however, suggests that alterations in the microbiome may be a contributing factor. The microbiome refers to all microorganisms in a habitat including bacteria, fungi, and viruses. Using modern sequencing technologies, we are now capable of detecting and analyzing the human microbiome in more detail than ever before. Epidemiological and experimental studies have indicated that a complex intestinal microbiome supports the development of the immune system during childhood, thus providing protection from allergic diseases, including food allergy. The microbiome becomes an important part of human physiology and forms dynamic relationships with our various barrier systems. For example, bacterial dysbiosis is a hallmark of atopic eczema and correlates with disease progression. Similarly, the lung and nasopharyngeal microbiome is altered in patients with asthma and allergic rhinitis. While these results are interesting, the underlying mechanisms are still unclear and need to be investigated with functional studies. This review gives a short overview of the terminology and methods used in microbiome research before highlighting results concerning the lung, skin, and intestinal microbiome in allergic diseases.


Subject(s)
Dermatitis, Atopic , Food Hypersensitivity , Microbiota , Rhinitis, Allergic , Dysbiosis , Humans
7.
Allergy ; 76(11): 3408-3421, 2021 11.
Article in English | MEDLINE | ID: mdl-34407212

ABSTRACT

Atopic eczema (AE) is an inflammatory skin disease with involvement of genetic, immunological and environmental factors. One hallmark of AE is a skin barrier disruption on multiple, highly interconnected levels: filaggrin mutations, increased skin pH and a microbiome dysbiosis towards Staphylococcus aureus overgrowth are observed in addition to an abnormal type 2 immune response. Extrinsic factors seem to play a major role in the development of AE. As AE is a first step in the atopic march, its prevention and appropriate treatment are essential. Although standard therapy remains topical treatment, powerful systemic treatment options emerged in the last years. However, thorough endotyping of the individual patients is still required for ideal precision medicine approaches in future. Therefore, novel microbial and immunological biomarkers were described recently for the prediction of disease development and treatment response. This review summarizes the current state of the art in AE research.


Subject(s)
Dermatitis, Atopic , Microbiota , Administration, Cutaneous , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/drug therapy , Dysbiosis , Filaggrin Proteins , Humans , Staphylococcus aureus
8.
Hautarzt ; 72(7): 579-585, 2021 Jul.
Article in German | MEDLINE | ID: mdl-34115159

ABSTRACT

BACKGROUND: Our skin is a very important and complex organ of the body. The microorganisms of the skin, the so-called microbiome, represent an important part of the healthy skin barrier and are influenced by various external and internal factors. AIM: The question to what extent the skin microbiome represents a diagnostic or even therapeutic target in the context of skin diseases is discussed. MATERIALS AND METHODS: A literature search was performed. RESULTS: Several diseases are associated with negative alterations of the skin microbiome. In atopic dermatitis, a correlation between severity and increased availability of Staphylococcus aureus is known, with a loss of bacterial diversity on the skin. In the future, S. aureus will not only be used as a diagnostic marker in atopic dermatitis, but also represents a promising target as a predictive marker for therapeutic success. The role of the skin microbiome in psoriasis has not yet been researched in depth. However, there is evidence that dysbiosis of the skin microbiome contributes to the course of psoriasis and that there is a disturbance in immune tolerance in patients. In the case of acne, the involvement of Cutibacterium acnes in the clinical picture is well known; however, recent findings show that it is not sufficient to identify the species, but certain characteristics of C. acnes strains are associated. CONCLUSION: Microbial biomarkers are currently only established in atopic dermatitis. For other diseases, this might be the case in the future; however combinations of microorganisms, single species and also strains with specific characteristics must be considered.


Subject(s)
Dermatitis, Atopic , Microbiota , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/therapy , Dysbiosis , Humans , Skin , Staphylococcus aureus
9.
Allergy ; 75(11): 2888-2898, 2020 11.
Article in English | MEDLINE | ID: mdl-32562575

ABSTRACT

BACKGROUND: Atopic eczema (atopic dermatitis, AD) is characterized by disrupted skin barrier associated with elevated skin pH and skin microbiome dysbiosis, due to high Staphylococcus aureus loads, especially during flares. Since S aureus shows optimal growth at neutral pH, we investigated the longitudinal interplay between these factors and AD severity in a pilot study. METHOD: Emollient (with either basic pH 8.5 or pH 5.5) was applied double-blinded twice daily to 6 AD patients and 6 healthy (HE) controls for 8 weeks. Weekly, skin swabs for microbiome analysis (deep sequencing) were taken, AD severity was assessed, and skin physiology (pH, hydration, transepidermal water loss) was measured. RESULTS: Physiological, microbiome, and clinical results were not robustly related to the pH of applied emollient. In contrast to longitudinally stable microbiome in HE, S aureus frequency significantly increased in AD over 8 weeks. High S aureus abundance was associated with skin pH 5.7-6.2. High baseline S aureus frequency predicted both increase in S aureus and in AD severity (EASI and local SCORAD) after 8 weeks. CONCLUSION: Skin pH is tightly regulated by intrinsic factors and limits the abundance of S aureus. High baseline S aureus abundance in turn predicts an increase in AD severity over the study period. This underlines the importance and potential of sustained intervention regarding the skin pH and urges for larger studies linking skin pH and skin S aureus abundance to understand driving factors of disease progression.


Subject(s)
Dermatitis, Atopic , Eczema , Dermatitis, Atopic/diagnosis , Humans , Hydrogen-Ion Concentration , Pilot Projects , Severity of Illness Index , Skin , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...