Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chimia (Aarau) ; 77(9): 616-619, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-38047837

ABSTRACT

In this work, we investigated the technical feasibility of 'on-demand' production of selected drugs to cover their demand for a time window of 90 days. We focused on two sub-processes 'automated chemical synthesis' and 'formulation in micropellets'  to enable personalized dosing. The production of drugs 'on-demand' is challenging, important, but also attractive. Switzerland could thus gain access to an additional instrument for increasing resilience for supply-critical drugs. The biggest challenge in the case study presented here is the scalability of automated chemical synthesis and the application range of micropellet formulations.


Subject(s)
Pharmaceutical Preparations , Switzerland , Pharmaceutical Preparations/supply & distribution
2.
Biochem Pharmacol ; 211: 115504, 2023 05.
Article in English | MEDLINE | ID: mdl-36921634

ABSTRACT

Integrins are a family of cell surface receptors well-recognized for their therapeutic potential in a wide range of diseases. However, the development of integrin targeting medications has been impacted by unexpected downstream effects, reflecting originally unforeseen interference with the bidirectional signalling and cross-communication of integrins. We here selected one of the most severely affected target integrins, the integrin lymphocyte function-associated antigen-1 (LFA-1, αLß2, CD11a/CD18), as a prototypic integrin to systematically assess and overcome these known shortcomings. We employed a two-tiered ligand-based virtual screening approach to identify a novel class of allosteric small molecule inhibitors targeting this integrin's αI domain. The newly discovered chemical scaffold was derivatized, yielding potent bis-and tris-aryl-bicyclic-succinimides which inhibit LFA-1 in vitro at low nanomolar concentrations. The characterisation of these compounds in comparison to earlier LFA-1 targeting modalities established that the allosteric LFA-1 inhibitors (i) are devoid of partial agonism, (ii) selectively bind LFA-1 versus other integrins, (iii) do not trigger internalization of LFA-1 itself or other integrins and (iv) display oral availability. This profile differentiates the new generation of allosteric LFA-1 inhibitors from previous ligand mimetic-based LFA-1 inhibitors and anti-LFA-1 antibodies, and is projected to support novel immune regulatory regimens selectively targeting the integrin LFA-1. The rigorous computational and experimental assessment schedule described here is designed to be adaptable to the preclinical discovery and development of novel allosterically acting compounds targeting integrins other than LFA-1, providing an exemplary approach for the early characterisation of next generation integrin inhibitors.


Subject(s)
Lymphocyte Function-Associated Antigen-1 , Signal Transduction , Lymphocyte Function-Associated Antigen-1/chemistry , Lymphocyte Function-Associated Antigen-1/metabolism , Ligands , Intercellular Adhesion Molecule-1/metabolism
3.
Eur J Med Chem ; 175: 107-113, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31077996

ABSTRACT

The DNA-repair enzyme MutT homolog 1 (MTH1) is a potential target for a broad range of tumors. Its substrate binding site features a non-catalytical pair of aspartic acids which resembles the catalytic dyad of aspartic proteases. We hypothesized that inhibitors of the latter might be re-targeted for MTH1 despite the two enzyme classes having different substrates and catalyze different reactions. We selected from the crystal structures of holo aspartic proteases a library of nearly 350 inhibitors for in silico screening. Three fragment hits were identified by docking and scoring according to a force field-based energy with continuum dielectric solvation. These fragments showed good ligand efficiency in a colorimetric assay (MW <300 Da and IC50<50µM). Molecular dynamics simulations were carried out for determining the most favorable interaction patterns. On the basis of the simulation results we evaluated in vitro seven commercially available compounds, two of which showed submicromolar potency for MTH1. To obtain definitive evidence of the predicted binding modes we solved the crystal structures of five of the 10 inhibitors predicted in silico. The final step of hit optimization was guided by protein crystallography and involved the synthesis of a single compound, the lead 11, which shows nanomolar affinity for MTH1 in two orthogonal binding assays, and selectivity higher than 2000-fold against its original target (BACE1). The high rate of fragment-hit identification and the fast optimization suggest that ligand retargeting by binding site analogy is an efficient strategy for drug design.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , DNA Repair Enzymes/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Crystallography, X-Ray , DNA Repair Enzymes/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Ligands , Molecular Docking Simulation , Molecular Structure , Phosphoric Monoester Hydrolases/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...