Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 14(8)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35458132

ABSTRACT

The fate of ß-glucan (BG) health promoting properties during food production is crucial, but not predictable yet. Therefore, high molar mass BG (hBG) and control BG (cBG) were extracted from two barley varieties, characterized and added to wheat breads at levels of 3% and 6%. Bread quality criteria, carbohydrate contents and BG content and structural properties were determined. Additionally, breads were subjected to an in vitro digestion. The BG content in the chyme, molar mass, molar ratio, viscosity and bile acid retention were determined. The hBG and the cBG decreased loaf volume and increased crumb hardness with increasing BG content. The reduction in BG content during bread making was similar for hBG and cBG, but the molar mass of cBG decreased to a greater extent. As a result, only 10% of cBG entering in vitro digestion were found in the chyme afterwards, while 40% of the ingested hBG were detected. Molar mass reduction was much more severe for cBG compared to hBG. The use of hBG showed higher viscosity and better bile acid retention, indicating cholesterol lowering properties, compared to similar or higher amounts of cBG. These results provide valuable knowledge on the criteria to select BG-rich raw materials for ideal health promoting properties.


Subject(s)
Bread , beta-Glucans , beta-Glucans/chemistry , Bile Acids and Salts , Health Promotion
2.
Foods ; 11(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35406998

ABSTRACT

Amaranth and finger millet are important food security crops in Africa but show poor bread making ability, even in composite wheat breads. Malting and steaming are promising approaches to improve composite bread quality, which have not been fully explored yet. Therefore, in this study, wheat was blended with native, steamed or malted finger millet or amaranth in the ratio of 70:30. Wheat/native amaranth (WHE-NAM) and wheat/malted amaranth (WHE-MAM) had longer dough development times and higher dough stabilities, water absorption capacities and farinograph quality numbers than wheat/steamed amaranth (WHE-SAM), wheat/native finger millet (WHE-NFM), wheat/steamed finger millet (WHE-SFM) or wheat/malted finger millet (WHE-MFM). The WHE-NAM and WHE-MAM breads had lower crumb firmness and chewiness, higher resilience and cohesiveness and lighter colours than WHE-NFM, WHE-SFM and WHE-MFM. Starch and protein digestibility of composite breads were not different (p > 0.05) from each other and ranged between 95−98% and 83−91%, respectively. Composite breads had higher ash (1.9−2.5 g/100 g), dietary fibre (5.7−7.1 g/100 g), phenolic acid (60−122 mg/100 g) and phytate contents (551−669 mg/100 g) than wheat bread (ash 1.6 g/100 g; dietary fibre 4.5 g/100 g; phenolic acids 59 mg/100 g; phytate 170 mg/100 g). The WHE-NAM and WHE-MAM breads possessed the best crumb texture and nutritional profile among the composite breads.

3.
Theor Appl Genet ; 135(4): 1331-1343, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35088105

ABSTRACT

KEY MESSAGE: A novel approach based on the loaf volume-grain protein content relation is suggested to consider the static protein use efficiency and stability as efficient quality-related descriptors for wheat varieties. The most important trait for baking quality of winter wheat is loaf volume (V). It is mostly determined by grain protein content (GPC) and quality. New varieties with a high potential of grain protein use efficiency (ProtUE) are very important for reducing the surplus use of nitrogen fertilizer in areas where nitrogen leaching is large. This is also an important goal of agricultural policies in the European Union. Additionally, ProtUE needs to be very stable across environments in the face of progressing climate change with more volatile growing conditions. We evaluated a new approach to assess ProtUE and stability based on the V-GPC relationship instead of using only single traits. The study comprised 11,775 baking tests from 355 varieties grown 1988-2019 in 668 different environments in Germany. V was predicted by quadratic and linear regression functions for quality groups, indicating a reduction of ProtUE from 1988 to 2019. We introduced a dynamic and a static approach to assess ProtUE and stability as potential criteria in variety registration. We found a considerably lower heritability of the dynamic ProtUE (h2 = 43%) compared to the static ProtUE (h2 = 92%) and a lower dynamic stability (h2 = 32%) than for the static stability (h2 = 51%). None of these measures is in conflict with the selection for high V. In particular, V and static ProtUE are strongly genetically associated (r = 0.81), indicating an advantage of the static over the dynamic approach.


Subject(s)
Grain Proteins , Triticum , Edible Grain/genetics , Edible Grain/metabolism , Grain Proteins/metabolism , Nitrogen/metabolism , Phenotype , Triticum/genetics , Triticum/metabolism
4.
Environ Biosafety Res ; 9(2): 67-73, 2010.
Article in English | MEDLINE | ID: mdl-21288462

ABSTRACT

Several biological containment methods have been developed to reduce pollen dispersal; many of them only have a proof of concept in a model plant species. This review focuses on biological containment measures which were tested for their long-term efficiency at the greenhouse or field scale level, i.e. plastid transformation, transgene excission, cleistogamy and cytoplasmic male sterility (CMS). Pollen-mediated gene transfer in transplastomic tobacco could occur at very low frequencies if the predominant mode of inheritance is maternal. Transgene excision from tobacco pollen can be made highly efficient by coexpression of two recombinases. For cleistogamous oilseed rape it was shown that some flowers were partially open depending on genotypes, environment and recording dates. Reports on the stability of CMS in maize and sunflower indicated that there is a high variability for different genotypes under different environmental conditions and over successive years. But for both crop types some stable lines could be selected. These data demonstrate that the biological containment methods discussed are very promising for reducing gene flow but that no single containment strategy provides 100% reduction. However, the necessary efficiency of biological containment methods depends on the level of containment required. The containment level may need to be higher for safety purposes (e.g. production of special plant-made pharmaceuticals), while much lower containment levels may already be sufficient to reach coexistence goals. It is concluded that where pollen-mediated gene flow must be prevented altogether, combinations of complementary containment systems will be required.


Subject(s)
Containment of Biohazards/methods , Crops, Agricultural/genetics , Gene Flow , Plants, Genetically Modified , Pollen/genetics , Genetic Engineering/methods , Plant Infertility , Recombination, Genetic , Transgenes
5.
Transgenic Res ; 16(5): 557-69, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17541721

ABSTRACT

The cultivation of genetically modified (GM) herbicide resistant oilseed rape (Brassica napus) has increased over the past few years. The transfer of herbicide resistance genes via pollen (gene flow) from GM crops to non-GM crops is of relevance for the realisation of co-existence of different agricultural cultivation forms as well as for weed management. Therefore the likelihood of pollen-mediated gene flow has been investigated in numerous studies. Despite the difficulty to compare different experiments with varying levels of outcrossing, we performed a literature search for world-wide studies on cross-fertilisation in fully fertile oilseed rape. The occurrence and frequency of pollen-mediated intraspecific gene flow (outcrossing rate) can vary according to cultivar, experimental design, local topography and environmental conditions. The outcrossing rate from one field to another depends also on the size and arrangement of donor and recipient populations and on the ratio between donor and recipient plot size. The outcrossing levels specified in the presented studies are derived mostly from experiments where the recipient field is either surrounding the donor field (continuous design) or is located as a patch at different distances from the donor field (discontinuous design). Reports of gene flow in Brassica napus generally show that the amount of cross-fertilisation decreases as the distance from the pollen source increases. The evidence given in various studies reveals that the bulk of GM cross-fertilisation occurs within the first 10 m of the recipient field. The removal of the first 10 m of a non-transgenic field facing a GM crop might therefore be more efficient for reducing the total level of cross-fertilisation in a recipient sink population than to recommend separation distances. Future experiments should investigate cross-fertilisation with multiple adjacent donor fields at the landscape level under different spatial distributions of rapeseed cultivars and different cropping systems. The level of cross-fertilisation occurring over the whole field is mainly important for co-existence and has not been investigated in agricultural scale experiments until now. Potential problems with herbicide resistant oilseed rape volunteers arising from intraspecific gene flow can be largely solved by the choice of suitable cultivars and herbicides as well as by soil management.


Subject(s)
Brassica napus/genetics , Herbicides/pharmacology , Pollen/metabolism , Crops, Agricultural/genetics , Crosses, Genetic , Drug Resistance , Gene Flow , Genotype , Models, Genetic , Plants, Genetically Modified , Transgenes
6.
Theor Appl Genet ; 111(8): 1553-62, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16160820

ABSTRACT

Resveratrol is a phytoalexin produced in various plants like wine, peanut or pine in response to fungal infection or UV irradiation, but it is absent in members of the Brassicaceae. Moreover, resveratrol and its glucoside (piceid) are considered to have beneficial effects on human health, known to reduce heart disease, arteriosclerosis and cancer mortality. Therefore, the introduction of the gene encoding stilbene synthase for resveratrol production in rapeseed is a tempting approach to improve the quality of rapeseed products. The stilbene synthase gene isolated from grapevine (Vitis vinifera L.) was cloned under control of the seed-specific napin promotor and introduced into rapeseed (Brassica napus L.) by Agrobacterium-mediated co-transformation together with a ds-RNA-interference construct deduced from the sequence of the key enzyme for sinapate ester biosynthesis, UDP-glucose:sinapate glucosyltransferase (BnSGT1), assuming that the suppression of the sinapate ester biosynthesis may increase the resveratrol production in seeds through the increased availability of the precursor 4-coumarate. Resveratrol glucoside (piceid) was produced at levels up to 361 microg/g in the seeds of the primary transformants. This value exceeded by far piceid amounts reported from B. napus expressing VST1 in the wild type sinapine background. There was no significant difference in other important agronomic traits, like oil, protein, fatty acid and glucosinolate content in comparison to the control plants. In the third seed generation, up to 616 microg/g piceid was found in the seeds of a homozygous T3-plant with a single transgene copy integrated. The sinapate ester content in this homozygous T3-plant was reduced from 7.43 to 2.40 mg/g. These results demonstrate how the creation of a novel metabolic sink could divert the synthesis towards the production of piceid rather than sinapate ester, thereby increasing the value of oilseed products.


Subject(s)
Acyltransferases/genetics , Brassica napus/genetics , Glucosides/biosynthesis , Seeds/metabolism , Blotting, Southern , Brassica napus/metabolism , Breeding/methods , Chromatography, High Pressure Liquid , DNA Primers , Enzyme-Linked Immunosorbent Assay , Gene Transfer Techniques , Glucosides/chemistry , Plants, Genetically Modified , RNA Interference , Stilbenes/chemistry , Vitis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...