Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Genes Evol ; 223(3): 159-69, 2013 May.
Article in English | MEDLINE | ID: mdl-23111653

ABSTRACT

Fibroblast growth factor receptors (FGFR) are highly conserved receptor tyrosine kinases, and evolved early in metazoan evolution. In order to investigate their functional conservation, we asked whether the Kringelchen FGFR in the freshwater polyp Hydra vulgaris, is able to functionally replace FGFR in fly embryos. In Drosophila, two endogenous FGFR, Breathless (Btl) and Heartless (Htl), ensure formation of the tracheal system and mesodermal cell migration as well as formation of the heart. Using UAS-kringelchen-5xmyc transgenic flies and targeted expression, we show that Kringelchen is integrated correctly into the cell membrane of mesodermal and tracheal cells in Drosophila. Nevertheless, Kringelchen expression driven in tracheal cells failed to rescue the btl (LG19) mutant. The Hydra FGFR was able to substitute for Heartless in the htl (AB42) null mutant; however, this occurred only during early mesodermal cell migration. Our data provide evidence for functional conservation of this early-diverged FGFR across these distantly related phyla, but also selectivity for the Htl FGFR in the Drosophila system.


Subject(s)
Drosophila/genetics , Hydra/genetics , Receptors, Fibroblast Growth Factor/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Evolution, Molecular , Molecular Sequence Data , Mutation , Phylogeny , Receptors, Fibroblast Growth Factor/chemistry , Sequence Homology, Amino Acid
2.
Differentiation ; 76(8): 881-96, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18452552

ABSTRACT

The Caenorhabditis elegans intestinal lumen is surrounded by a dense cytoplasmic network that is laterally attached to the junctional complex and is referred to as the endotube. It localizes to the terminal web region which anchors the microvillar actin filament bundles and is particularly rich in intermediate filaments. To examine their role in intestinal morphogenesis and function, C. elegans reporter strains were generated expressing intestine-specific CFP-tagged intermediate filament polypeptide IFB-2. When these animals were treated with dsRNA against intestinal intermediate filament polypeptide IFC-2, the endotube developed multiple bubble-shaped invaginations that protruded into the enterocytic cytoplasm. The irregularly widened lumen remained surrounded by a continuous IFB-2::CFP-labeled layer. Comparable but somewhat mitigated phenotypic changes were also noted in wild-type N2 worms treated with ifc-2 (RNAi). Junctional complexes were ultrastructurally and functionally normal and the apical domain of intestinal cells was also not altered. These observations demonstrate that IFC-2 is important for structural maintenance of the intestinal tube but is not needed for establishment of the endotube and epithelial cell polarity.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Intermediate Filament Proteins/physiology , Intestinal Mucosa/metabolism , Intestines/cytology , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans Proteins/ultrastructure , Cell Polarity/genetics , Cell Polarity/physiology , Epithelial Cells/cytology , Gene Expression Regulation, Developmental/physiology , Homeostasis/physiology , Intermediate Filament Proteins/biosynthesis , Intermediate Filament Proteins/genetics , Intestines/ultrastructure , Microscopy, Confocal , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...