Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473086

ABSTRACT

Ensuring high standards of animal welfare is not only an ethical duty for zoos and aquariums, but it is also essential to achieve their conservation, education, and research goals. While for some species, animal welfare assessment frameworks are already in place, little has been done for marine animals under human care. Responding to this demand, the welfare committee of the European Association for Aquatic Mammals (EAAM) set up a group of experts on welfare science, cetacean biology, and zoo animal medicine across Europe. Their objective was to develop a comprehensive tool to evaluate the welfare of bottlenose dolphins (Tursiops truncatus), named Dolphin-WET. The tool encompasses 49 indicators that were either validated through peer review or management-based expertise. The first of its kind, the Dolphin-WET is a species-specific welfare assessment tool that provides a holistic approach to evaluating dolphin welfare. Inspired by Mellor's Five Domains Model and the Welfare Quality®, its hierarchical structure allows for detailed assessments from overall welfare down to specific indicators. Through combining 37 animal-based and 12 resource-based indicators that are evaluated based on a two- or three-level scoring, the protocol offers a detailed evaluation of individual dolphins. This approach allows for regular internal monitoring and targeted welfare management, enabling caretakers to address specific welfare concerns effectively.

2.
J Exp Biol ; 226(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-38035544

ABSTRACT

For the two dolphin species Sotalia guianensis (Guiana dolphin) and Tursiops truncatus (bottlenose dolphin), previous research has shown that the vibrissal crypts located on the rostrum represent highly innervated, ampullary electroreceptors and that both species are correspondingly sensitive to weak electric fields. In the present study, for a comparative assessment of the sensitivity of the bottlenose dolphin's electroreceptive system, we determined detection thresholds for DC and AC electric fields with two bottlenose dolphins. In a psychophysical experiment, the animals were trained to respond to electric field stimuli using the go/no-go paradigm. We show that the two bottlenose dolphins are able to detect DC electric fields as low as 2.4 and 5.5 µV cm-1, respectively, a detection threshold in the same order of magnitude as those in the platypus and the Guiana dolphin. Detection thresholds for AC fields (1, 5 and 25 Hz) were generally higher than those for DC fields, and the sensitivity for AC fields decreased with increasing frequency. Although the electroreceptive sensitivity of dolphins is lower than that of elasmobranchs, it is suggested that it allows for both micro- and macro-scale orientation. In dolphins pursuing benthic foraging strategies, electroreception may facilitate short-range prey detection and target-oriented snapping of their prey. Furthermore, the ability to detect weak electric fields may enable dolphins to perceive the Earth's magnetic field through induction-based magnetoreception, thus allowing large-scale orientation.


Subject(s)
Bottle-Nosed Dolphin , Animals , Sensation , Vibrissae
3.
Anat Rec (Hoboken) ; 305(3): 592-608, 2022 03.
Article in English | MEDLINE | ID: mdl-34558802

ABSTRACT

In the order of cetacean, the ability to detect bioelectric fields has, up to now, only been demonstrated in the Guiana dolphin (Sotalia guianensis) and is suggested to facilitate benthic feeding. As this foraging strategy has also been reported for bottlenose dolphins (Tursiops truncatus), we studied electroreception in this species by combining an anatomical analysis of "vibrissal crypts" as potential electroreceptors from neonate and adult animals with a behavioral experiment. In the latter, four bottlenose dolphins were trained on a go/no-go paradigm with acoustic stimuli and afterward tested for stimulus generalization within and across modalities using acoustic, optical, mechanical, and electric stimuli. While neonates still possess almost complete vibrissal follicles including a hair shaft, hair papilla, and cavernous sinus, adult bottlenose dolphins lack these features. Thus, their "vibrissal crypts" show a similar postnatal morphological transformation from a mechanoreceptor to an electroreceptor as in Sotalia. However, innervation density was high and almost equal in both, neonate as well as adult animals. In the stimulus generalization tests the dolphins transferred the go/no-go response within and across modalities. Although all dolphins responded spontaneously to the first presentation of a weak electric field, only three of them showed perfect transfer in this modality by responding continuously to electric field amplitudes of 1.5 mV cm-1 , successively reduced to 0.5 mV cm-1 . Electroreception can explain short-range prey detection in crater-feeding bottlenose dolphins. The fact that this is the second odontocete species with experimental evidence for electroreception suggests that it might be widespread in this marine mammal group.


Subject(s)
Bottle-Nosed Dolphin , Animals , Bottle-Nosed Dolphin/anatomy & histology , Vibrissae
SELECTION OF CITATIONS
SEARCH DETAIL
...