Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 892: 164712, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37301381

ABSTRACT

Emerging contaminants and their pervasive presence in freshwater ecosystems have been widely documented, but less is known about their prevalence and the harm they cause in marine ecosystems, particularly in developing countries. This study provides data on the prevalence and risk posed by microplastics, plasticisers, pharmaceuticals and personal care products (PPCPs), and heavy metal(loid)s (HMs) along the Maharashtra coast of India. The sediment and coastal water samples were collected from 17 sampling stations, processed, and subjected to FTIR-ATR, ICP-MS, SEM-EDX, LC-MS/MS, and GC-MS for further analysis. Higher MPs abundance, combined with the pollution load index, indicates that the northern zone is a high-impact zone with pollution concerns. Plasticisers in extracted MPs and HMs adsorption on MPs surface from surrounding waters reveal their roles as a source and vector for contaminants, respectively. The mean concentration of metoprolol (53.7-306 ng L-1), tramadol (16.6-198 ng L-1), venlafaxine (24.6-234 ng L-1), and triclosan (211-433 ng L-1) in Maharashtra's coastal waters were several folds higher than in other water systems, raising major health concerns. The hazard quotient (HQ) scores revealed that >70 % of study sites pose a high to medium (1 > HQ > 0.1) ecological risk to fish, crustaceans and algae, indicating serious concern. Fish and crustaceans (35.3 % each) show a higher level of risk than algae (29.5 %). Metoprolol and venlafaxine could represent greater ecological risks than tramadol. Similarly, HQ suggests that bisphenol A has larger ecological risks than bisphenol S along the Maharashtra coast. To the best of our knowledge, this is the first in-depth investigation into emerging pollutants in Indian coastal regions. This information is crucial for better policy formulation and coastal management in India in general, and Maharashtra in particular.


Subject(s)
Cosmetics , Metals, Heavy , Tramadol , Water Pollutants, Chemical , Animals , Microplastics/analysis , Ecosystem , Water/analysis , Plastics/analysis , Geologic Sediments , Chromatography, Liquid , Metoprolol , Venlafaxine Hydrochloride , Water Pollutants, Chemical/analysis , India , Tandem Mass Spectrometry , Metals, Heavy/analysis , Risk Assessment , Cosmetics/analysis , Pharmaceutical Preparations , Environmental Monitoring
2.
Materials (Basel) ; 16(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37048965

ABSTRACT

In this study, high-pressure laminates (HPL) impregnated with phenol-formaldehyde (PF) resins enriched with kraft lignin were developed. Pulverised kraft lignin was added to the commercial PF resin in the amounts of 1% and 5% (solid to solid). Laminates were manufactured using pressure impregnation of the resins into the papers and using hot pressing of HPL in a laboratory press. Laminates with a lignin content of 1% (L-LPF-1) showed the highest bending strength (72.42 MPa) and Brinell hardness (9.41); they also exhibited the best moisture uptake (9.61) and thickness swelling after immersion in water (3.32%). Except for impact bending, laminates with a lignin content of 5% (L-LPF-5) had worse properties. However, the differences between the variants are mostly not statistically significant and are comparable with the results of commercial PF resin. Scanning electron microscopy confirmed the homogenous structure of produced laminates and the occurrence of cohesive failures in ruptured L-LPF-1 laminates, whereas in ruptured L-LPF-5 laminates adhesive failures were also observed. Based on the conducted research it can be said that the utilisation of kraft lignin as an additive to PF resin (in the amount of 1%) has a positive effect on the produced HPL.

3.
Sci Rep ; 12(1): 1909, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115635

ABSTRACT

Timber suffers from various biological damages. Recent efforts aim on nature-friendly sustainable technologies of wood protection to replace classical synthetic agents having usually negative impact on many non-target organisms including man. This research investigated the biocidal effectiveness of lavender oil (LO) in protecting the Norway spruce (Picea abies) wood against the termites Reticulitermes flavipes and the brown-rot fungus Rhodonia placenta. Following, selected physical characteristics of spruce wood treated with LO were evaluated: colour changes, roughness, surface wetting with water and surface free energy (SFE). Experiments showed that LO increased the resistance of spruce wood to termites nearly to the level of its treatment with commercial biocide based on trivalent boron and quaternary ammonium salt. The additional hydrophobic treatment of wood ensured its full termite-resistance even after artificial weathering in Xenotest and leaching in water according to EN 84, respectively. It shows a high potential of LO to protect wood against termites. Adversely, the effectiveness of 5% LO against rot was not sufficient. The colour of the oil-treated wood was preserved, its roughness increased slightly, and wetting and SFE led to a positive change, improving the adhesion of potentially applied coatings or adhesives for exterior exposures.

4.
Materials (Basel) ; 13(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322427

ABSTRACT

The paper investigated the torrefaction of cones from three tree species: Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.), and European larch (Larix decidua Mill.). The objective was to determine the effects of torrefaction temperature on the properties of cones with a view to their further use as a renewable energy source. Torrefaction was conducted at 200, 235, 275, and 320 °C for 60 min under an inert gas atmosphere. Elemental composition, ash content, and lower heating value (LHV) were measured for the original and torrefied samples. Torrefaction performance was evaluated using formulas for solid yield, higher heating value (HHV), HHV enhancement factor, as well as energy yield. Scanning electron microscopy (SEM) was used to assess elemental composition and structural changes at the surface of the torrefied material. For all the studied conifer species, the higher the torrefaction temperature, the greater the carbon and ash content and the higher the LHV (a maximum of 27.6 MJ·kg-1 was recorded for spruce and larch cones torrefied at 320 °C). SEM images showed that an increase in process temperature from 200 to 320 °C led to partial decomposition of the scale surface as a result of lignin degradation. Cone scales from all tree species revealed C, O, N, Mg, K, and Si at the surface (except for pine scales, which did not contain Si). Furthermore, the higher the temperature, the higher the enhancement factor and the lower the energy yield of the torrefied biomass. Under the experimental conditions, spruce cones were characterized by the lowest weight loss, the highest HHV, and the highest energy yield, and so they are deemed the best raw material for torrefaction among the studied species.

5.
Nanomaterials (Basel) ; 9(11)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694326

ABSTRACT

Changes in surface material characteristics can significantly affect the adhesion and overall life of coatings on wood. In order to increase the durability of transparent exterior coatings, it is possible to use the surface modification of wood with UV-stabilizing substances. In this work, selected types of surface modifications using benzotriazoles, HALS, ZnO and TiO2 nanoparticles, and their combinations were applied to oak wood (Quercus robur, L.). On such modified surfaces, the surface free energy, roughness, and contact wetting angle with three selected types of exterior transparent coatings were subsequently determined. An oil-based coating, waterborne acrylic thick layer coating, and thin-layer synthetic coating were tested and interaction with the aforementioned surface modifications was investigated after 6 weeks of accelerated artificial weathering. The results of changes in the initially measured surface characteristics of the modified oak wood were compared to the real results of degradation of coatings after artificial accelerated weathering. The positive effect of surface modification, in particular the mixture of benzotriazoles, HALS, and ZnO nanoparticles on all kinds of coatings was proven, and the best results were observed in thick-film waterborne acrylic coating. The changes in the measured surface characteristics corresponded to the observed durability of the coatings only when measured by wetting using drops of the tested coatings.

6.
Materials (Basel) ; 12(19)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547179

ABSTRACT

This study provides a solution for the utilization of two waste materials, namely the residues of soft polyurethane foam from the production of mattresses and winter wheat husks. Thermal insulation panels with a nominal density of 50-150 kg/m3, bonded one-component moisture curing polyurethane adhesive, were developed, and the effect of the ratio between recycled polyurethane foam and winter wheat husk on internal bond strength, compressive stress at 10% strain, water uptake, coefficient of thermal conductivity, and volumetric heat capacity was observed. The developed composite materials make use of the very good thermal insulation properties of the two input waste materials, and the coefficient of thermal conductivity of the resulting boards achieves excellent values, namely 0.0418-0.0574 W/(m.K). The developed boards can be used as thermal insulation in the structures of environmentally friendly buildings.

7.
Molecules ; 24(18)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514275

ABSTRACT

This paper deals with the development and characteristics of the properties of a permeable water-resistant heat insulation panel based on recycled materials. The insulation panel consists of a thermal insulation core of recycled soft polyurethane foam and winter wheat husk, a layer of geopolymer that gives the entire sandwich composite strength and fire resistance, and a nanofibrous membrane that permits water vapor permeability, but not water in liquid form. The observed properties are the thermal conductivity coefficient, volumetric heat capacity, fire resistance, resistance to long-term exposure of a water column, and the tensile strength perpendicular to the plane of the board. The results showed that while the addition of husk to the thermal insulation core does not significantly impair its thermal insulation properties, the tensile strength perpendicular to the plane of these boards was impaired by the addition of husk. The geopolymer layer increased the fire resistance of the panel for up to 13 min, and the implementation of the nanofibrous membrane resulted in a water flow of 154 cm2 in the amount of 486 g of water per 24 h at a water column height of 0.8 m.


Subject(s)
Hot Temperature , Mechanical Phenomena , Recycling , Water/chemistry , Membranes, Artificial , Nanofibers/chemistry , Permeability , Polyurethanes/chemistry , Thermal Conductivity , Triticum/chemistry
8.
Materials (Basel) ; 12(9)2019 May 02.
Article in English | MEDLINE | ID: mdl-31052544

ABSTRACT

The development of composite materials from alternative raw materials, and the design of their properties for the intended purpose is an integral part of the rational management of raw materials and waste recycling. The submitted paper comprehensively assesses the physical and mechanical properties of sandwich composite material made from particles of winter rapeseed stalks, geopolymer and reinforcing basalt lattices. The developed composite panel is designed for use as a filler in constructions (building or building joinery). The observed properties were: bending characteristics, internal bonding, thermal conductivity coefficient and combustion characteristics. The results showed that the density of the particleboard has a significant effect on the resulting mechanical properties of the entire sandwich panel. On the contrary, the density of the second layer of the sandwich panel, geopolymer, did not have the same influence on its mechanical properties as the density of the particleboard. The basalt fibre reinforcement lattice positively affected the mechanical properties of sandwich composites only if it was sufficiently embedded in the structure of the particle board. All of the manufactured sandwich composites resisted flame for more than 13 min and the fire resistance was positively affected by the density of the geopolymer layer.

9.
Materials (Basel) ; 11(9)2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30205474

ABSTRACT

Colour changes and associated wood degradation in exterior and interior applications influenced by ultraviolet (UV) and visible radiation (VIS) decreases the aesthetic value of the products and shortens the overall life of transparent coatings. The aim of the paper is to achieve colour stabilization of oak, larch, Douglas fir and spruce heartwood via surface treatment with UV stabilizers, hindered amine light stabilizers (HALS), nanoparticles TiO2, ZnO, and mixtures thereof, during exposure to UV and VIS radiation. Colour changes were evaluated during accelerated artificial ageing testing in Xenotest. The distinctly individual character of colour changes in surface treatments due to the underlying wood species was confirmed. A synergistic effect was found when using a combination of active substances compared to substances used individually. The mixture of benzotriazoles with HALS (Tinuvin 5151) in combination with TiO2 and ZnO nanoparticles was confirmed as one of the most effective treatments for colour stabilization of wood due to UV and VIS spectrums.

SELECTION OF CITATIONS
SEARCH DETAIL
...