Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; : e0103324, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953360

ABSTRACT

Certain members of the family Sulfolobaceae represent the only archaea known to oxidize elemental sulfur, and their evolutionary history provides a framework to understand the development of chemolithotrophic growth by sulfur oxidation. Here, we evaluate the sulfur oxidation phenotype of Sulfolobaceae species and leverage comparative genomic and transcriptomic analysis to identify the key genes linked to sulfur oxidation. Metabolic engineering of the obligate heterotroph Sulfolobus acidocaldarius revealed that the known cytoplasmic components of sulfur oxidation alone are not sufficient to drive prolific sulfur oxidation. Imaging analysis showed that Sulfolobaceae species maintain proximity to the sulfur surface but do not necessarily contact the substrate directly. This indicates that a soluble form of sulfur must be transported to initiate cytoplasmic sulfur oxidation. Conservation patterns and transcriptomic response implicate an extracellular tetrathionate hydrolase and putative thiosulfate transporter in a newly proposed mechanism of sulfur acquisition in the Sulfolobaceae.IMPORTANCESulfur is one of the most abundant elements on earth (2.9% by mass), so it makes sense that the earliest biology found a way to use sulfur to create and sustain life. However, beyond evolutionary significance, sulfur and the molecules it comprises have important technological significance, not only in chemicals such as sulfuric acid and in pyritic ores containing critical metals but also as a waste product from oil and gas production. The thermoacidophilic Sulfolobaceae are unique among the archaea as sulfur oxidizers. The trajectory for how sulfur biooxidation arose and evolved can be traced using experimental and bioinformatic analyses of the available genomic data set. Such analysis can also inform the process by which extracellular sulfur is acquired and transported by thermoacidophilic archaea, a phenomenon that is critical to these microorganisms but has yet to be elucidated.

2.
mBio ; 14(2): e0005323, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37036347

ABSTRACT

A type II VapB14 antitoxin regulates biofilm dispersal in the archaeal thermoacidophile Sulfolobus acidocaldarius through traditional toxin neutralization but also through noncanonical transcriptional regulation. Type II VapC toxins are ribonucleases that are neutralized by their proteinaceous cognate type II VapB antitoxin. VapB antitoxins have a flexible tail at their C terminus that covers the toxin's active site, neutralizing its activity. VapB antitoxins also have a DNA-binding domain at their N terminus that allows them to autorepress not only their own promoters but also distal targets. VapB14 antitoxin gene deletion in S. acidocaldarius stunted biofilm and planktonic growth and increased motility structures (archaella). Conversely, planktonic cells were devoid of archaella in the ΔvapC14 cognate toxin mutant. VapB14 is highly conserved at both the nucleotide and amino acid levels across the Sulfolobales, extremely unusual for type II antitoxins, which are typically acquired through horizontal gene transfer. Furthermore, homologs of VapB14 are found across the Crenarchaeota, in some Euryarchaeota, and even bacteria. S. acidocaldarius vapB14 and its homolog in the thermoacidophile Metallosphaera sedula (Msed_0871) were both upregulated in biofilm cells, supporting the role of the antitoxin in biofilm regulation. In several Sulfolobales species, including M. sedula, homologs of vapB14 and vapC14 are not colocalized. Strikingly, Sulfuracidifex tepidarius has an unpaired VapB14 homolog and lacks a cognate VapC14, illustrating the toxin-independent conservation of the VapB14 antitoxin. The findings here suggest that a stand-alone VapB-type antitoxin was the product of selective evolutionary pressure to influence biofilm formation in these archaea, a vital microbial community behavior. IMPORTANCE Biofilms allow microbes to resist a multitude of stresses and stay proximate to vital nutrients. The mechanisms of entering and leaving a biofilm are highly regulated to ensure microbial survival, but are not yet well described in archaea. Here, a VapBC type II toxin-antitoxin system in the thermoacidophilic archaeon Sulfolobus acidocaldarius was shown to control biofilm dispersal through a multifaceted regulation of the archaeal motility structure, the archaellum. The VapC14 toxin degrades an RNA that causes an increase in archaella and swimming. The VapB14 antitoxin decreases archaella and biofilm dispersal by binding the VapC14 toxin and neutralizing its activity, while also repressing the archaellum genes. VapB14-like antitoxins are highly conserved across the Sulfolobales and respond similarly to biofilm growth. In fact, VapB14-like antitoxins are also found in other archaea, and even in bacteria, indicating an evolutionary pressure to maintain this protein and its role in biofilm formation.


Subject(s)
Antitoxins , Bacterial Toxins , Antitoxins/metabolism , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Sulfolobales , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL
...