Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Probiotics Antimicrob Proteins ; 15(2): 351-362, 2023 04.
Article in English | MEDLINE | ID: mdl-34581975

ABSTRACT

Probiotics are considered a natural source for treating many intestinal disorders, which deliver health benefits in different ways. The study aims to evaluate the immunomodulatory gene expression on HT-29 cell line using Bacillus licheniformis MCC 2514 and Bifidobacterium breve NCIM 5671 as a single culture and in combination. Upon inflammation induced by LPS, the combination of bacteria downregulated the pro-inflammatory cytokines IL-1α (13.4), IL-12 (14.6), IL-8 (2.6), and IL-6 (1.9), and in contrast, TNF-α (21.2) folds has upregulated. However, anti-inflammatory genes such as IL-4 (0.6), IL-10 (2.9), TGF-2 (92.2), and TGF-3 (85.8) folds were upregulated. The combination of bacteria against oxidative stress downregulated the pro-inflammatory cytokines such as IL-1α & ß, IL-6, IL-8, IL-12, and IL-18, and upregulated the anti-inflammatory cytokines IL-10, IL-4, TGF-2, and TGF-3. On the introduction of Kocuria rhizophila, the pro-inflammatory cytokines were upregulated. On supplementation of B. licheniformis and B. breve, the upregulated pro-inflammatory cytokines were decreased, and anti-inflammatory cytokines such as IL-4 (6.2), IL-10 (23.5), TGF-2 (166), and TGF-3(28.4) folds were increased. However, gene expression of toll-like receptor-2 was found high (26 folds) upon introducing probiotic bacteria. ELISA results of Interferon-γ found that the expression was higher (7.19 ng/mL) on the introduction of both the bacteria in combination. The higher anti-inflammatory activity was observed when potential probiotic bacteria were used in combination compared to a single culture. Overall study indicates that the combination of aerobic B. licheniformis and anaerobic B. breve has an anti-inflammatory activity that can sustain an excellent gastrointestinal environment during pathogen invasion and inflammation.


Subject(s)
Bacillus licheniformis , Bifidobacterium breve , Probiotics , Humans , Interleukin-10/genetics , Bacillus licheniformis/genetics , Bacillus licheniformis/metabolism , Interleukin-8/metabolism , Interleukin-4 , Interleukin-6 , Bifidobacterium/metabolism , Cytokines/genetics , Cytokines/metabolism , HT29 Cells , Interleukin-12 , Inflammation , Anti-Inflammatory Agents/pharmacology , Probiotics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...