Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 27(22): 225302, 2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27114463

ABSTRACT

We report ambipolar organic field-effect transistors and complementary inverter circuits with reverse-offset-printed (ROP) Ag electrodes fabricated on a flexible substrate. A diketopyrrolopyrrole-based co-polymer (PDPP-TAT) was used as the semiconductor and poly(methyl methacrylate) was used as the gate insulator. Considerable improvement is observed in the n-channel electrical characteristics by inserting a cesium carbonate (Cs2CO3) as the electron-injection/hole-blocking layer at the interface between the semiconductors and the electrodes. The saturation mobility values are 0.35 cm(2) V(-1) s(-1) for the p-channel and 0.027 cm(2) V(-1) s(-1) for the n-channel. A complementary inverter is demonstrated based on the ROP process, and it is selectively controlled by the insertion of Cs2CO3 onto the n-channel region via thermal evaporation. Moreover, the devices show stable operation during the mechanical bending test using tensile strains ranging from 0.05% to 0.5%. The results confirm that these devices have great potential for use in flexible and inexpensive integrated circuits over a large area.

2.
Nanotechnology ; 27(7): 07LT01, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26763473

ABSTRACT

Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

3.
Nanotechnology ; 26(48): 485501, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26541294

ABSTRACT

Au nanoparticle (NP)-modified Si nanomembrane (Si NM) Schottky barrier diodes (SBDs) were fabricated by using a transfer-printing method to create pedestals using only one photomask on a flexible substrate. The transfer using the pedestals afforded a yield of >95% with no significant cracks. The plasmonic Au NPs can facilitate the improvement of the incident optical absorption. The Au NP-modified Si NM SBD exhibited enhanced photoresponse characteristics with an external quantum efficiency (η(EQE)) of 34%, a photosensitivity (P) of 27 at a voltage bias of -5 V, a light intensity of 1.2 W cm(-2), and a responsivity (R(ph)) of 0.21 A W(-1). Additionally, the mechanical bending characteristics of the device were observed while a compressive strain up to 0.62% was applied to the diode. The results suggest that the Au NP-modified Si NM SBD has great potential for use in multifunction devices as a strain sensor and photosensor.

4.
J Nanosci Nanotechnol ; 13(5): 3491-4, 2013 May.
Article in English | MEDLINE | ID: mdl-23858886

ABSTRACT

This work studies the effect of post annealing of pentacene on a flexible substrate through the examination of electrical properties and surface morphologies. It is confirmed that the best performance of devices is achieved when the post annealing temperature is 60 degrees C, since the grain size increases, which decrease grain boundaries caused charge transport limit. We can also confirmed the large threshold voltage shift of device annealed at 60 degrees C that means the lower trap density between channel and insulator interface. The device annealed at 60 degrees C exhibits a saturation mobility of 1.99 cm2/V x s, an on/off ratio of 1.87 x 10(4), and a subthreshold slope of 2.5 V/decade.


Subject(s)
Electrodes , Membranes, Artificial , Nanostructures/chemistry , Naphthacenes/chemistry , Titanium/chemistry , Transistors, Electronic , Elastic Modulus , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Hardness , Hot Temperature , Materials Testing , Nanostructures/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...