Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762597

ABSTRACT

The use of face masks during the COVID-19 pandemic resulted in significant societal changes, particularly for individuals with sensitive skin. To address this issue, the researchers explored traditional medicine and identified Potentilla anserina extract as a potential solution due to its anti-inflammatory and moisturizing effects. This research investigated how this extract influences skin hydration, barrier function, and itching. The findings revealed that the extract had a hydrating effect by elevating Aquaporin-3 (AQP3) expression. Additionally, the study demonstrated that the extract improved skin barrier function, with Filaggrin (FLG) expression being approximately three times higher (p < 0.001) in the Potentilla-anserina-extract-treated group compared to the control group and the genes associated with itching being reduced. In this process, we researched and developed HPßCD (hydroxypropyl-ß-cyclodextrin)-Liposome containing Potentilla anserina extract, gradually and sustainably releasing the active components of the Potentilla anserina extract. During four weeks of clinical trials involving individuals wearing masks for over 6 h a day, a moisturizer containing Potentilla anserina extract demonstrated a notable reduction in skin redness. Hemoglobin values (A.U.), which serve as indicators of skin redness, showed decreases of 5.06% and 6.74% in the test area inside the mask after 2 and 4 weeks, respectively, compared to the baseline measurements. Additionally, the moisturizer containing Potentilla anserina extract notably decreased Trans Epidermal Water Loss (TEWL), with reductions of 5.23% and 9.13% observed in the test area inside the mask after 2 and 4 weeks, respectively. The moisturizer, especially in the test area treated with the extract-containing moisturizer, significantly enhanced skin hydration compared to the control group. The Corneometer values (A.U) exhibited notable increases of 11.51% and 15.14% in the test area inside the mask after 2 and 4 weeks, respectively. These discoveries emphasize the potential of Potentilla anserina extract and its utility in tackling skin issues caused by mask wearing, including enhancing moisture, fortifying the skin's barrier, and alleviating itching. These results indicate that moisturizers incorporating specific ingredients provide greater benefits compared to conventional moisturizers.


Subject(s)
COVID-19 , Potentilla , Humans , Masks , Pandemics , Pruritus , 2-Hydroxypropyl-beta-cyclodextrin
3.
Biomater Res ; 23: 2, 2019.
Article in English | MEDLINE | ID: mdl-30675376

ABSTRACT

BACKGROUND: Coffee silverskin is a thin film that covers the raw coffee bean. In general, coffee silverskin, which detaches during the coffee roasting process, is disposed as firelighters or dispatched to landfills and can cause serious environmental pollution. The aim of this study was to investigate the feasibility of using coffee silverskin as a functional material in cosmetics by evaluating its bioactive ingredients, antioxidative activity, cytoprotective effect, matrix metalloproteinase-1 (MMP-1)-inhibiting effect, and anti-melanogenesis effect. RESULTS: To this end, a 50% ethanol (EtOH) extract and its ethyl acetate (EtOAc) fraction were prepared from coffee silverskin; caffeine was found to be the major compound in the extract. Both the 50% EtOH extract and its EtOAc fraction exhibited antioxidant activities. However, the EtOAc fraction showed a greater radical-scavenging activity and reducing power than that shown by the 50% EtOH extract. Furthermore, the EtOAc fraction increased cell viability in a UVB-irradiated human keratinocyte injury model and significantly suppressed UVB-induced MMP-1 expression and α-melanocyte-stimulating hormone (α-MSH)-stimulated melanin production in HaCaT keratinocytes and B16F1 melanocytes, respectively. Interestingly, caffeine, the major component of the EtOAc fraction, did not show an inhibitory effect. Thus, the antioxidant capacity of the coffee silverskin extract may be attributable to some compounds that exhibit a high antioxidant capacity even at low concentrations or the total antioxidant capacity of various constituent phenolic compounds. CONCLUSION: Our findings indicate that coffee silverskin has the potential for application as a natural functional material in multifunctional cosmetics.

4.
J Microbiol Biotechnol ; 29(1): 21-29, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30609887

ABSTRACT

The effects of Lavandula angustifolia extract fermented with Pediococcus pentosaceus DK1 on UVB-mediated MMP-1 expression and collagen decrease in human skin fibroblasts were determined, and the conversion of its components was also analyzed. Fermentation was performed at varying L. angustifolia extract and MRS medium concentrations, and optimal fermentation conditions were selected. L. angustifolia extracts showed decreased cytotoxicity after fermentation in the fibroblasts. UVB-irradiated fibroblasts treated with fermented L. angustifolia extract showed MMP-1 expression 8.2-14.0% lower than that in UVB-irradiated fibroblasts treated with non-fermented extract. This was observed even at fermented extract concentrations lower than those of non-fermented extracts. Fibroblasts treated with fermented L. angustifolia extract showed 20% less reduction in collagen production upon UVB irradiation than those treated with non-fermented extracts. UVB-irradiated fibroblasts treated with fermented L. angustifolia extracts showed 50% higher inhibition of ROS generation than those treated with non-fermented extract. Luteolin and apigenin glycosides of L. angustifolia were converted during fermentation, and identified using RP-HPLC and LC/ESI-MS. Therefore, the effects of L. angustifolia extract on MMP-1 expression and collagen decrease in UVB-irradiated human skin fibroblasts were increased through fermentation by P. pentosaceus.


Subject(s)
Diospyros/microbiology , Lavandula/chemistry , Pediococcus pentosaceus/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Radiation-Protective Agents/pharmacology , Skin Aging/drug effects , Cell Line , Collagen Type I/metabolism , Fermentation , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/radiation effects , Fruit/microbiology , Gene Expression/drug effects , Gene Expression/radiation effects , Humans , Matrix Metalloproteinase 1/genetics , Procollagen/metabolism , Reactive Oxygen Species/metabolism , Skin Aging/genetics , Skin Aging/radiation effects , Ultraviolet Rays/adverse effects
5.
Bioorg Med Chem ; 26(23-24): 6015-6022, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30446440

ABSTRACT

Dimeric cynnamoyl analogues (DCAs) with depigmenting activity have been developed. In this study, a role of diamide linkage chain length of DCAs as a tyrosinase inhibitor was investigated on tyrosinase inhibitory activity, antioxidative activity, hydrophobicity and anti-melanogenesis as well as structural characteristics and dipole moments based on density functional theory. DCAs with different diamide-link chain lengths (n = 2, 3, and 4) and various functional groups (m-coumaroyl, p-coumaroyl, isoferuloyl and feruloyl groups) were synthesized. DCAs with a diamide-link chain length of three indicated high inhibitory effect of melanin production on α-melanocyte stimulating hormone (α-MSH) stimulated B16F1 cells. Approach of p-hydroxyl group of DCAs to active site of tyrosinase, an important melanogenic enzyme, is interfered by addition of m-methoxy group. In structural modeling based on density functional theory, DCAs with a diamide-link chain length of three showed folded shapes, and they had lower dipole moment than with a diamide-link chain length of two or four. Thus, for the enhancement of the depigmenting activities of dimeric compounds, the diamide-link chain length is important. Our results provide an important index for the design of dimeric compounds with physiological activities.


Subject(s)
Amides/pharmacology , Antioxidants/pharmacology , Cinnamates/pharmacology , Melanoma/drug therapy , Monophenol Monooxygenase/antagonists & inhibitors , Agaricales/enzymology , Amides/chemistry , Animals , Antioxidants/chemistry , Cell Survival/drug effects , Cinnamates/chemistry , Density Functional Theory , Dimerization , Dose-Response Relationship, Drug , Melanoma/metabolism , Melanoma/pathology , Mice , Molecular Structure , Monophenol Monooxygenase/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
6.
Nanomaterials (Basel) ; 8(8)2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30115875

ABSTRACT

Non-invasive skin penetration of a drug is increased by an edge activator, which enhances the nanoliposome deformability. The objective of this study was to investigate the role of the alkyl chain number of sucrose surfactants as an edge activator in elastic nanoliposomes. In addition, the physicochemical properties of the elastic nanoliposomes were characterized and an in vitro human skin permeation study was performed. Elastic nanoliposomes that were composed of sucrose monostearate (MELQ), sucrose distearate (DELQ), and sucrose tristearte (TELQ) were prepared using a thin-film hydration method. Particle size and entrapment efficiency of elastic nanoliposomes increased proportionally with an increase in the amounts and the numbers of the stearate in sucrose surfactant. Deformability of elastic nanoliposomes was indicated as DELQ > MELQ > TELQ and the same pattern was revealed through the in vitro human skin permeability tests. These results suggest that the number of alkyl chains of sucrose surfactant as edge activator affects the physicochemical property, stability, and skin permeability in elastic nanoliposome. Our findings give a valuable platform for the development of elastic nanoliposomes as skin drug delivery systems.

7.
Pharmacol Rep ; 70(5): 930-935, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30099299

ABSTRACT

BACKGROUND: In mammals, UV radiation induces melanin synthesis in melanocyte for protecting their skin through the stimulation of α-melanocyte stimulating hormone (α-MSH) from keratinocytes. In this study, the inhibitory effects of dehydroglyasperin C (DGC), an useful component of Glycyrrhiza uralensis (G. uralensis), was investigated on melanogenesis induced by α-melanocyte stimulating hormone (α-MSH) and its mechanisms. METHODS: Melanogenesis suppression effect of DGC on α-MSH induced B16F1 melanoma cells. The cell viability was measured by MTT assay. Expression and phosphorylation of melanogeic protein were conducted using western blot. cAMP acceleration was measured by cAMP immunoassay kit. To investigate whitening mechanism, we used ERK inhibitor (PD98059). RESULTS: DGC decreased intra cellular tyrosinase (TYR) activity and expression of melanin synthesis related proteins (TYR and TRP-1) in a dose-dependent manner on α-MSH induced melanogenesis. In addition, DGC induced the downregulation of MITF (melanocyte-specific transcription factor) through suppression of cAMP-CREB pathway. Also, phosphorylation of extracellular signal regulated kinase (ERK) decreased MITF by DGC treatment. CONCLUSION: Therefore, DGC could be used as a whitening ingredient in skin and clinical usage against hyperpigmentation.


Subject(s)
Benzopyrans/pharmacology , Cyclic AMP/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Melanins/biosynthesis , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Microphthalmia-Associated Transcription Factor/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Enzyme Activation/drug effects , Flavonoids/pharmacology , Melanoma, Experimental/enzymology , Melanoma, Experimental/metabolism , Membrane Glycoproteins/metabolism , Mice , Monophenol Monooxygenase/metabolism , Oxidoreductases/metabolism , alpha-MSH/antagonists & inhibitors , alpha-MSH/pharmacology
8.
Bioorg Med Chem ; 26(14): 4201-4208, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30030001

ABSTRACT

Dicaffeoylquinic acid (DCQA), which contain 2 caffeic acids and a quinic acid, is 6 isomeric compounds (1,3-, 1,4-, 1,5-, 3,4-, 3,5-, and 4,5-DCQA). In this study, the mechanism underlying the inhibitory effect of DCQA isomers on melanogenesis in B16F1 murine melanoma cells stimulated by melanocyte stimulating hormone (α-MSH) was evaluated. DCQA isomers showed inhibitory effects on melanogenesis in α-MSH-stimulated B16F1 cells. Furthermore, the anti-melanogenesis activities of 1,5-DCQA and 4,5-DCQA were 61% and 84%, respectively, which were greater than that of arbutin (35%). For cell-free tyrosinase, 3,4-DCQA and 4,5-DCQA indicated high inhibitory effects, similar to the activity to arbutin (35%) at 25 µM. DCQA isomers inhibited the melanogenic enzymes including tyrosinase and dopachrome tautomerase (DCT) on α-MSH-stimulated B16F1 cells. Interestingly, 4,5-DCQA, the most potent inhibitor of melanogenesis among the six DCQA isomers, significantly downregulated the expression of microphthalmia-associated transcription factor (MITF), tyrosinase-related protein 1 (TRP1) containing tyrosinase, and DCT. In particular, the inhibitory mechanism of 4,5-DCQA on MITF expression was elucidated, revealing that 4,5-DCQA inhibits the phosphorylation of cAMP response element-binding protein (CREB) by attenuating cAMP generation during melanogenesis. A molecular docking study was conducted to elucidate the inhibitory mechanism of 4,5-DCQA on cAMP production. DCQA isomers dock to the residues of adenylyl cyclase with a distance of <3 Å, except for 1,3-DCQA. Especially, 4,5-DCQA showed Full Fitness of -1304.68 kcal/mol and △G of -8.33 kcal/mol, as well as H-bonding with adenylyl cyclase at ILE953 and LYS930 residues. In conclusion, DCQA isomers have different effects on melanogenesis depending on their structure. Especially, 4,5-DCQA has depigmentation activity through the inhibitory effect on cellular tyrosinase directly and binding effect on adenylyl cyclase, resulting in the downregulation of MITF protein, thereby reducing the expression of melanogenic enzymes.


Subject(s)
Enzyme Inhibitors/pharmacology , Melanins/antagonists & inhibitors , Monophenol Monooxygenase/antagonists & inhibitors , Quinic Acid/analogs & derivatives , Animals , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Melanins/chemistry , Melanins/metabolism , Melanocytes/chemistry , Melanocytes/drug effects , Melanocytes/metabolism , Mice , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/metabolism , Quinic Acid/chemical synthesis , Quinic Acid/chemistry , Quinic Acid/pharmacology , Stereoisomerism , Structure-Activity Relationship , Tumor Cells, Cultured
9.
J Dermatol Sci ; 2018 Apr 22.
Article in English | MEDLINE | ID: mdl-29735364

ABSTRACT

BACKGROUND: Microphthalmia-associated transcription factor (MITF) is regulated by expression and/or degradation pathway, controlling to the expression of melanogenic enzymes for melanin synthesis. Methyl-2-acetylamino-3-(4-hydroxyl-3,5-dimethoxybenzoylthio)propanoate (MAHDP) is reported to anti-melanogenesis effect but its mechanism remain unclear. OBJECTIVE: To investigate the effects of MAHDP on melanogenesis and elucidate its mechanism. METHODS: Tyrosinase activity, melanogenic proteins and gene expression levels were measured with MAHDP treatment in B16F1 cells, human melanocytes, reconstructed skin and clinical trial. RESULTS: MAHDP attenuated melanin production in α-MSH (melanocyte stimulating hormone) stimulated-B16F1 cells. MAHDP decreased the expression of tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). But, MADPH did not affect the phosphorylation of p38 MAPK, JNK and AKT, which are associated with the regulation of MITF expression. These results suggest that MITF downstream is regulated not transcriptionally but translationally. Treatment of MG132 (a proteasomal degradation inhibitor) almost abolished the decrease of MITF protein levels by MAHDP. Phosphorylation and ubiquitination of MITF for proteasomal degradation were increased by treatment of MAHDP. Treatment of PD98059 (an ERK phosphorylation inhibitor) abrogated ERK phosphorylation, downregulation of MITF and tyrosinase as well as the decrease of melanin contents by MAHDP. Therefore, the degradation of MITF proteins by MAHDP is regulated to the ERK signaling. Finally, MAHDP improved the pigmentation in human epidermal melanocytes, a UVB-irradiated the reconstructed skin model and clinical trial without cytotoxicity and skin irritation. CONCLUSION: These results clearly demonstrate that MAHDP suppresses the expression of melanogenic enzymes through ERK phosphorylation-mediated MITF proteasomal degradation, and suggest that MAHDP may be efficient as a therapeutic agent for hyperpigmentation.

10.
Pharmacol Rep ; 69(6): 1224-1231, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29128803

ABSTRACT

BACKGROUND: The ultraviolet B (UVB) from solar radiation increases the generation of reactive oxygen species (ROS), which mediate the production of matrix metalloproteinases (MMPs), and acts mainly on the epidermis layer of the skin. This study was aimed at assessing the anti-photoaging effects of dehydroglyasperin C isolated from Glycyrrhiza uralensis Fisch on MMPs levels in HaCaT human keratinocytes and to elucidate the underlying mechanism. METHODS: The cell viability was measured by MTT assay. Expression, phosphorylation and enzymatic activity of the protein were examined using ELISA, Western blot or gelatin zymography. Intracellular ROS measurement was evaluated by fluorescent ELISA and 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA) assay. RESULTS: In the present study, we found that dehydroglyasperin C markedly inhibited UVB-mediated expression of collagenase (MMP-1) and gelatinase (MMP-9) by inhibiting ROS generation. Dehydroglyasperin C treatment also decreased the UVB irradiation-mediated activation of mitogen-activated protein kinase (MAPK), c-Jun phosphorylation, and c-Fos expression. In addition, the down-regulation of UVB-induced c-Jun phosphorylation caused by dehydroglyasperin C treatment was more than the down-regulation of c-Fos expression in the HaCaT human keratinocytes. CONCLUSION: Our results indicated that dehydroglyasperin C may function as a potential anti-photoaging agent by inhibiting UVB-mediated MMPs expression via suppression of MAPK and AP-1 signaling.


Subject(s)
Benzopyrans/pharmacology , Keratinocytes/drug effects , Reactive Oxygen Species/metabolism , Ultraviolet Rays , Benzopyrans/isolation & purification , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Enzyme-Linked Immunosorbent Assay , Glycyrrhiza uralensis/chemistry , Humans , Keratinocytes/radiation effects , Matrix Metalloproteinase 1/drug effects , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/radiation effects , Matrix Metalloproteinase 9/drug effects , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/radiation effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Reactive Oxygen Species/radiation effects , Signal Transduction/drug effects , Signal Transduction/radiation effects , Transcription Factor AP-1/metabolism
11.
J Photochem Photobiol B ; 164: 30-35, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27639122

ABSTRACT

2-[Tris(oleoyloxymethyl)methylamino]-1-ethane sulfonic acid (TES trioleate) is an inhibitor of phospholipase A2 (PLA2), which hydrolyzes cell membrane phospholipids to produce arachidonic acid (AA) and lysophospholipids (LysoPLs). Here, we investigated the protective effects of TES trioleate on cell damage caused by ultraviolet A (UVA) light and reactive oxygen species (ROS). Pre-incubation with 250-1000µM TES trioleate resulted in concentration-dependent protection from UVA-induced damage in HaCaT cells. Additionally, 25-1000µM TES trioleate provided protection against H2O2 in a concentration-dependent manner. In human erythrocytes treated with 1O2, 10-100µM TES trioleate showed concentration-dependent protective effects, similar to but stronger than the controls, 4-BPB and lipophilic antioxidant (+)-α-tocopherol at 100µM. TES trioleate did not have detectable radical scavenging activity. Moreover, compared with (+)-α-tocopherol and rutin, TES trioleate showed low ROS scavenging activity. Thus, although TES trioleate showed cell protective effects against UVA, H2O2, and 1O2-induced damages, these effects were not caused by the scavenging ability of the radical or ROS. Finally, pretreatment of HaCaT cells and human erythrocytes with l-α-lysophosphatidylcholine produced by PLA2 promoted increased cell damage at low concentrations. Thus, the protective effects of TES trioleate on cellular damage by UVA and ROS may be associated with inhibition of PLA2-dependent cell damage rather than ROS scavenging.


Subject(s)
Phospholipase A2 Inhibitors/pharmacology , Phospholipases A2/drug effects , Reactive Oxygen Species/metabolism , Tromethamine/analogs & derivatives , Ultraviolet Rays , Cell Line , Humans , Tromethamine/pharmacology
12.
Food Sci Biotechnol ; 25(2): 567-573, 2016.
Article in English | MEDLINE | ID: mdl-30263307

ABSTRACT

Inhibitory effect against melanogenesis and the in vitro tyrosinase inhibitory activity of ethyl acetate (EtOAc) and methylene chloride fractions of 80% methanol extracts of mung bean (Vigna radiata L.) seeds and sprouts were determined. EtOAc extract fractions from mung bean sprouts germinated for 12 h (33.5%), 1 day (56.5%), and 2 days (47.9%) inhibited melanogenesis more effectively than arbutin (16.3%). The in vitro tyrosinase inhibitory activity was higher in an EtOAc extract fraction from mung bean sprouts germinated for 2 days (70.5%). EtOAc extract fractions from mung bean sprouts germinated for 1 day showed excellent whitening effects due to the flavone vitexin. Extracts from mung bean sprouts germinated for 1 day can be used as a novel whitening cosmeceutical ingredient.

13.
Int J Pharm ; 483(1-2): 26-37, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25623491

ABSTRACT

In this study, Polygonum aviculare L. extract, which has superior antioxidative and cellular membrane protective activity, was loaded onto cell penetrating peptide (CPP) conjugated liposomes to enhance transdermal delivery. The physical characteristics of typical liposomes and CPP-conjugated liposomes containing P. aviculare extract were evaluated. The particle sizes of both liposomes were approximately 150 nm. Whereas the zeta potential of typical liposomes was -45 mV, that of CPP-conjugated liposomes was +42 mV. The loading efficiency of P. aviculare extract in both liposomes was calculated to be about 83%. Fluorescent-labeled liposomes were prepared to evaluate cellular uptake and skin permeation efficiency. Using flow cytometry, we found that CPP-conjugated liposomes improved cellular uptake of the fluorescent dye as compared with the typical liposomes. In addition, the skin permeation of CPP-conjugated liposomes was proved higher than that of typical liposomes by confocal laser scanning microscopy studies and Franz diffusion cell experiments. The improved cellular uptake and skin permeation of the CPP-conjugated liposomes were due to the cationic arginine-rich peptide. In vivo studies also determined that the CPP-conjugated liposomes were more effective in depigmentation and anti-wrinkle studies than typical liposomes. These results indicate that the CPP-conjugated liposomes could be effective for transdermal drug delivery of antioxidant and anti-aging therapeutics.


Subject(s)
Cell-Penetrating Peptides/chemistry , Drug Delivery Systems , Liposomes/chemistry , Plant Extracts/pharmacokinetics , Polygonum/chemistry , Animals , Cell Survival , Cells, Cultured , Humans , Keratinocytes , Mice , Mice, Hairless , Molecular Structure , Plant Extracts/chemistry , Skin Absorption , Skin Aging/drug effects , Ultraviolet Rays
14.
Chem Commun (Camb) ; 46(11): 1851-3, 2010 Mar 21.
Article in English | MEDLINE | ID: mdl-20198230

ABSTRACT

We demonstrated a convenient, flexible and modular synthetic approach for preparation of a small library of DNA-encapsulated supramolecular nanoparticles SNPs superset DNA and RGD-SNPs superset DNA with different sizes and RGD target ligand coverage for targeted gene delivery.


Subject(s)
DNA/chemistry , Gene Transfer Techniques , Nanoparticles/chemistry , Animals , Cell Line , DNA/metabolism , Humans , Mice , Nanoparticles/ultrastructure , Oligopeptides/chemistry , Oligopeptides/metabolism , Polyethylene Glycols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...