Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(37): e2301153, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37154199

ABSTRACT

Ultra-high energy density battery-type materials are promising candidates for supercapacitors (SCs); however, slow ion kinetics and significant volume expansion remain major barriers to their practical applications. To address these issues, hierarchical lattice distorted α-/γ-MnS@Cox Sy core-shell heterostructure constrained in the sulphur (S), nitrogen (N) co-doped carbon (C) metal-organic frameworks (MOFs) derived nanosheets (α-/γ-MnS@Cox Sy @N, SC) have been developed. The coordination bonding among Cox Sy , and α-/γ-MnS nanoparticles at the interfaces and the π-π stacking interactions developed across α-/γ-MnS@Cox Sy and N, SC restrict volume expansion during cycling. Furthermore, the porous lattice distorted heteroatom-enriched nanosheets contain a sufficient number of active sites to allow for efficient electron transportation. Density functional theory (DFT) confirms the significant change in electronic states caused by heteroatom doping and the formation of core-shell structures, which provide more accessible species with excellent interlayer and interparticle conductivity, resulting in increased electrical conductivity. . The α-/γ-MnS@Cox Sy @N, SC electrode exhibits an excellent specific capacity of 277 mA hg-1 and cycling stability over 23 600 cycles. A quasi-solid-state flexible extrinsic pseudocapacitor (QFEPs) assembled using layer-by-layer deposited multi-walled carbon nanotube/Ti3 C2 TX nanocomposite negative electrode. QFEPs deliver specific energy of 64.8 Wh kg-1 (1.62 mWh cm-3 ) at a power of 933 W kg-1 and 92% capacitance retention over 5000 cycles.

2.
ACS Nano ; 15(12): 18931-18973, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34860483

ABSTRACT

Potassium ion energy storage devices are competitive candidates for grid-scale energy storage applications owing to the abundancy and cost-effectiveness of potassium (K) resources, the low standard redox potential of K/K+, and the high ionic conductivity in K-salt-containing electrolytes. However, the sluggish reaction dynamics and poor structural instability of battery-type anodes caused by the insertion/extraction of large K+ ions inhibit the full potential of K ion energy storage systems. Extensive efforts have been devoted to the exploration of promising anode materials. This Review begins with a brief introduction of the operation principles and performance indicators of typical K ion energy storage systems and significant advances in different types of battery-type anode materials, including intercalation-, mixed surface-capacitive-/intercalation-, conversion-, alloy-, mixed conversion-/alloy-, and organic-type materials. Subsequently, host-guest relationships are discussed in correlation with the electrochemical properties, underlying mechanisms, and critical issues faced by each type of anode material concerning their implementation in K ion energy storage systems. Several promising optimization strategies to improve the K+ storage performance are highlighted. Finally, perspectives on future trends are provided, which are aimed at accelerating the development of K ion energy storage systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...