Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(13): 9181-9190, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38528433

ABSTRACT

Many unique adsorption properties of metal-organic frameworks (MOFs) have been revealed by diffraction crystallography, visualizing their vacant and guest-loaded crystal structures at the molecular scale. However, it has been challenging to see the spatial distribution of the adsorption behaviors throughout a single MOF particle in a transient equilibrium state. Here, we report three-dimensional (3D) visualization of molecular adsorption behaviors in a single crystalline particle of a MOF by in situ X-ray absorption fine structure spectroscopy combined with computed tomography for the first time. The 3D maps of water-coordinated Co sites in a 100 µm-scale MOF-74-Co crystal were obtained with 1 µm spatial resolution under several water vapor pressures. Through the visualization of the water vapor adsorption process, 3D spectroimaging revealed the mechanism and spatial heterogeneity of guest adsorption inside a single particle of a crystalline MOF.

2.
Nat Comput Sci ; 1(7): 470-478, 2021 Jul.
Article in English | MEDLINE | ID: mdl-38217117

ABSTRACT

Existing data-driven approaches for exploring high-entropy alloys (HEAs) face three challenges: numerous element-combination candidates, designing appropriate descriptors, and limited and biased existing data. To overcome these issues, here we show the development of an evidence-based material recommender system (ERS) that adopts Dempster-Shafer theory, a general framework for reasoning with uncertainty. Herein, without using material descriptors, we model, collect and combine pieces of evidence from data about the HEA phase existence of alloys. To evaluate the ERS, we compared its HEA-recommendation capability with those of matrix-factorization- and supervised-learning-based recommender systems on four widely known datasets of up-to-five-component alloys. The k-fold cross-validation on the datasets suggests that the ERS outperforms all competitors. Furthermore, the ERS shows good extrapolation capabilities in recommending quaternary and quinary HEAs. We experimentally validated the most strongly recommended Fe-Co-based magnetic HEA (namely, FeCoMnNi) and confirmed that its thin film shows a body-centered cubic structure.

3.
IUCrJ ; 7(Pt 6): 1036-1047, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33209317

ABSTRACT

New Nd-Fe-B crystal structures can be formed via the elemental substitution of LA-T-X host structures, including lanthanides (LA), transition metals (T) and light elements, X = B, C, N and O. The 5967 samples of ternary LA-T-X materials that are collected are then used as the host structures. For each host crystal structure, a substituted crystal structure is created by substituting all lanthanide sites with Nd, all transition metal sites with Fe and all light-element sites with B. High-throughput first-principles calculations are applied to evaluate the phase stability of the newly created crystal structures, and 20 of them are found to be potentially formable. A data-driven approach based on supervised and unsupervised learning techniques is applied to estimate the stability and analyze the structure-stability relationship of the newly created Nd-Fe-B crystal structures. For predicting the stability for the newly created Nd-Fe-B structures, three supervised learning models: kernel ridge regression, logistic classification and decision tree model, are learned from the LA-T-X host crystal structures; the models achieved maximum accuracy and recall scores of 70.4 and 68.7%, respectively. On the other hand, our proposed unsupervised learning model based on the integration of descriptor-relevance analysis and a Gaussian mixture model achieved an accuracy and recall score of 72.9 and 82.1%, respectively, which are significantly better than those of the supervised models. While capturing and interpreting the structure-stability relationship of the Nd-Fe-B crystal structures, the unsupervised learning model indicates that the average atomic coordination number and coordination number of the Fe sites are the most important factors in determining the phase stability of the new substituted Nd-Fe-B crystal structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...