Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Mol Cells ; 47(7): 100080, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871297

ABSTRACT

The intricate assembly process of vimentin intermediate filaments (IFs), key components of the eukaryotic cytoskeleton, has yet to be elucidated. In this work, we investigated the transition from soluble tetrameric vimentin units to mature 11-nm tubular filaments, addressing a significant gap in the understanding of IF assembly. Through a combination of theoretical modeling and analysis of experimental data, we propose a novel assembly sequence, emphasizing the role of helical turns and gap filling by soluble tetramers. Our findings shed light on the unique structural dynamics of vimentin and suggest broader implications for the general principles of IF formation.

2.
Int J Biol Macromol ; 262(Pt 1): 129620, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262549

ABSTRACT

In bacteria, NarJ plays an essential role as a redox enzyme maturation protein in the assembly of the nitrate reductase NarGHI by interacting with the N-terminal signal peptide of NarG to facilitate cofactor incorporation into NarG. The purpose of our research was to elucidate the exact mechanism of NarG signal peptide recognition by NarJ. We determined the structures of NarJ alone and in complex with the signal peptide of NarG via X-ray crystallography and verified the NarJ-NarG interaction through mutational, binding, and molecular dynamics simulation studies. NarJ adopts a curved α-helix bundle structure with a U-shaped hydrophobic groove on its concave side. This groove accommodates the signal peptide of NarG via a dual binding mode in which the left and right parts of the NarJ groove each interact with two consecutive hydrophobic residues from the N- and C-terminal regions of the NarG signal peptide, respectively, through shape and chemical complementarity. This binding is accompanied by unwinding of the helical structure of the NarG signal peptide and by stabilization of the NarG-binding loop of NarJ. We conclude that NarJ recognizes the NarG signal peptide through a complementary hydrophobic interaction mechanism that mediates a structural rearrangement.


Subject(s)
Escherichia coli , Protein Sorting Signals , Nitrate Reductase/chemistry , Nitrate Reductase/metabolism , Escherichia coli/metabolism , Oxidation-Reduction , Hydrophobic and Hydrophilic Interactions
3.
J Microbiol ; 61(12): 1033-1041, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38117463

ABSTRACT

Escherichia coli RclA and Staphylococcus aureus MerA are part of the Group I flavoprotein disulfide reductase (FDR) family and have been implicated in the contribution to bacterial pathogenesis by defending against the host immune response. Fusobacterium nucleatum is a pathogenic, anaerobic Gram-negative bacterial species commonly found in the human oral cavity and gastrointestinal tract. In this study, we discovered that the F. nucleatum protein FN0820, belonging to the Group I FDR family, exhibited a higher activity of a Cu2+-dependent NADH oxidase than E. coli RclA. Moreover, FN0820 decreased the dissolved oxygen level in the solution with higher NADH oxidase activity. We found that L-tryptophan and its analog 5-hydroxytryptophan inhibit the FN0820 activities of NADH oxidase and the concomitant reduction of oxygen. Our results have implications for developing new treatment strategies against pathogens that defend the host immune response with Group I FDRs.


Subject(s)
Escherichia coli , Fusobacterium nucleatum , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Bacteria/metabolism , Mouth , Flavoproteins/chemistry , Flavoproteins/metabolism
4.
Mol Cells ; 46(9): 538-544, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37528647

ABSTRACT

The formation of uniform vitreous ice is a crucial step in the preparation of samples for cryogenic electron microscopy (cryo-EM). Despite the rapid technological progress in EM, controlling the thickness of vitreous ice on sample grids with reproducibility remains a major obstacle to obtaining high-quality data in cryo-EM imaging. The commonly employed classical blotting process faces the problem of excess water that cannot be absorbed by the filter paper, resulting in the formation of thick and heterogeneous ice. In this study, we propose a novel approach that combines the recently developed nanowire self-wicking technique with the classical blotting method to effectively control the thickness and homogeneity of vitrified ice. With simple procedures, we generated a copper oxide spike (COS) grid by inducing COSs on commercially available copper grids, which can effectively remove excess water during the blotting procedure without damaging the holey carbon membrane. The ice thickness could be controlled with good reproducibility compared to non-oxidized grids. Incorporated into other EM techniques, our new modification method is an effective option for obtaining high-quality data during cryo-EM imaging.


Subject(s)
Copper , Ice , Cryoelectron Microscopy/methods , Reproducibility of Results
5.
Sci Rep ; 13(1): 11108, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429971

ABSTRACT

The foodborne bacterium Staphylococcus equorum strain KS1030 harbours plasmid pSELNU1, which encodes a lincomycin resistance gene. pSELNU1 undergoes horizontal transfer between bacterial strains, thus spreading antibiotic resistance. However, the genes required for horizontal plasmid transfer are not encoded in pSELNU1. Interestingly, a relaxase gene, a type of gene related to horizontal plasmid transfer, is encoded in another plasmid of S. equorum KS1030, pKS1030-3. The complete genome of pKS1030-3 is 13,583 bp long and encodes genes for plasmid replication, biofilm formation (the ica operon), and horizontal gene transfer. The replication system of pKS1030-3 possesses the replication protein-encoding gene repB, a double-stranded origin of replication, and two single-stranded origins of replication. The ica operon, relaxase gene, and a mobilization protein-encoding gene were detected in pKS1030-3 strain-specifically. When expressed in S. aureus RN4220, the ica operon and relaxase operon of pKS1030-3 conferred biofilm formation ability and horizontal gene transfer ability, respectively. The results of our analyses show that the horizontal transfer of pSELNU1 of S. equorum strain KS1030 depends on the relaxase encoded by pKS1030-3, which is therefore trans-acting. Genes encoded in pKS1030-3 contribute to important strain-specific properties of S. equorum KS1030. These results could contribute to preventing the horizontal transfer of antibiotic resistance genes in food.


Subject(s)
Staphylococcus aureus , Staphylococcus , Staphylococcus/genetics , Plasmids/genetics , Biofilms
6.
Mol Cells ; 46(5): 309-318, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37170772

ABSTRACT

The nucleoskeletal protein lamin is primarily responsible for the mechanical stability of the nucleus. The lamin assembly process requires the A11, A22, and ACN binding modes of the coiled-coil dimers. Although X-ray crystallography and chemical cross-linking analysis of lamin A/C have provided snapshots of A11 and ACN binding modes, the assembly mechanism of the entire filament remains to be explained. Here, we report a crystal structure of a coil 2 fragment, revealing the A22 interaction at the atomic resolution. The structure showed detailed structural features, indicating that two coiled-coil dimers of the coil 2 subdomain are separated and then re-organized into the antiparallel-four-helix bundle. Furthermore, our findings suggest that the ACN binding mode between coil 1a and the C-terminal part of coil 2 when the A11 tetramers are arranged by the A22 interactions. We propose a full assembly model of lamin A/C with the curvature around the linkers, reconciling the discrepancy between the in situ and in vitro observations. Our model accounts for the balanced elasticity and stiffness of the nuclear envelopes, which is essential in protecting the cellular nucleus from external pressure.


Subject(s)
Intermediate Filaments , Lamin Type A , Lamin Type A/metabolism , Intermediate Filaments/chemistry , Intermediate Filaments/metabolism , Cell Nucleus/metabolism , Protein Domains , Crystallography, X-Ray
7.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675166

ABSTRACT

Fusobacterium nucleatum is a lesion-associated obligate anaerobic pathogen of destructive periodontal disease; it is also implicated in the progression and severity of colorectal cancer. Four genes (FN0625, FN1055, FN1220, and FN1419) of F. nucleatum are involved in producing hydrogen sulfide (H2S), which plays an essential role against oxidative stress. The molecular functions of Fn1419 are known, but their mechanisms remain unclear. We determined the crystal structure of Fn1419 at 2.5 Å, showing the unique conformation of the PLP-binding site when compared with L-methionine γ-lyase (MGL) proteins. Inhibitor screening for Fn1419 with L-cysteine showed that two natural compounds, gallic acid and dihydromyricetin, selectively inhibit the H2S production of Fn1419. The chemicals of gallic acid, dihydromyricetin, and its analogs containing trihydroxybenzene, were potentially responsible for the enzyme-inhibiting activity on Fn1419. Molecular docking and mutational analyses suggested that Gly112, Pro159, Val337, and Arg373 are involved in gallic acid binding and positioned close to the substrate and pyridoxal-5'-phosphate-binding site. Gallic acid has little effect on the other H2S-producing enzymes (Fn1220 and Fn1055). Overall, we proposed a molecular mechanism underlying the action of Fn1419 from F. nucleatum and found a new lead compound for inhibitor development.


Subject(s)
Fusobacterium nucleatum , Hydrogen Sulfide , Fusobacterium nucleatum/metabolism , Molecular Docking Simulation , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Carbon-Sulfur Lyases/genetics , Carbon-Sulfur Lyases/metabolism
8.
J Microbiol Biotechnol ; 33(1): 28-34, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36457189

ABSTRACT

Endoribonuclease YbeY is specific to the single-stranded RNA of ribosomal RNAs and small RNAs. This enzyme is essential for the maturation and quality control of ribosomal RNA in a wide range of bacteria and for virulence in some pathogenic bacteria. In this study, we determined the crystal structure of YbeY from Staphylococcus aureus at a resolution of 1.9 Å in the presence of zinc chloride. The structure showed a zinc ion at the active site and two molecules of tricarboxylic acid citrate, which were also derived from the crystallization conditions. Our structure showed the zinc ion-bound local environment at the molecular level for the first time. Molecular comparisons were performed between the carboxylic moieties of citrate and the phosphate moiety of the RNA backbone, and a model of YbeY in complex with a single strand of RNA was subsequently constructed. Our findings provide molecular insights into how the YbeY enzyme recognizes single-stranded RNA in bacteria.


Subject(s)
Endoribonucleases , Staphylococcus aureus , Endoribonucleases/genetics , Staphylococcus aureus/genetics , Virulence , RNA , Zinc
9.
Biochem Biophys Res Commun ; 637: 210-217, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36403485

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder caused by C-terminally truncated lamin A, termed as the pre-progerin product. Progerin is a C-terminally farnesylated protein derived from pre-progerin, which causes nuclear deformation at the inner-nuclear membrane. As an alternative or additional mechanism, a farnesylation-independent abnormal interaction between the C-terminus of progerin and Ig-like domain has been proposed. However, the molecular mechanism underlying the role of unfarnesylated C-terminus of pre-progerin in HGPS remains largely unknown. In this study, we determined the crystal structures of C-terminal peptide of progerin and Ig-like domain of lamin A/C. Results showed that the C-terminal cysteine residue of progerin forms a disulfide bond with the only cysteine residue of the Ig-like domain. This finding suggested that unfarnesylated progerin can form a disulfide bond with the Ig-like domain in the lamin meshwork. The Alphafold2-assisted docking structure showed that disulfide bond formation was promoted by a weak interaction between the groove of Ig-like domain and the unfarnesylated C-terminal tail region of progerin. Our results provide molecular insights into the normal aging process as well as premature aging of humans.


Subject(s)
Aging, Premature , Lamin Type A , Progeria , Humans , Aging, Premature/genetics , Cysteine , Disulfides , Immunoglobulin Domains , Lamin Type A/chemistry , Progeria/genetics
10.
J Biol Chem ; 298(11): 102562, 2022 11.
Article in English | MEDLINE | ID: mdl-36198361

ABSTRACT

Macrophages produce itaconic acid in phagosomes in response to bacterial cell wall component lipopolysaccharide to eliminate invading pathogenic bacteria. Itaconic acid competitively inhibits the first enzyme of the bacterial glyoxylate cycle. To overcome itaconic acid stress, bacteria employ the bacterial LysR-type transcriptional regulator RipR. However, it remains unknown which molecule activates RipR in bacterial pathogenesis. In this study, we determined the crystal structure of the regulatory domain of RipR from the intracellular pathogen Salmonella. The RipR regulatory domain structure exhibited the typical dimeric arrangement with the putative ligand-binding site between the two subdomains. Our isothermal titration calorimetry experiments identified isocitrate as the physiological ligand of RipR, whose intracellular level is increased in response to itaconic acid stress. We further found that 3-phenylpropionic acid significantly decreased the resistance of the bacteria to an itaconic acid challenge. Consistently, the complex structure revealed that the compound is antagonistically bound to the RipR ligand-binding site. This study provides the molecular basis of bacterial survival in itaconic acid stress from our immune systems. Further studies are required to reveal biochemical activity, which would elucidate how Salmonella survives in macrophage phagosomes by defending against itaconic acid inhibition of bacterial metabolism.


Subject(s)
Bacterial Proteins , Salmonella , Isocitrates/metabolism , Ligands , Salmonella/genetics , Salmonella/metabolism , Bacterial Proteins/metabolism
11.
Commun Biol ; 5(1): 1085, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36224351

ABSTRACT

Eukaryotic Cu, Zn-superoxide dismutase (SOD1) is primarily responsible for cytotoxic filament formation in amyotrophic lateral sclerosis (ALS) neurons. Two cysteine residues in SOD1 form an intramolecular disulfide bond. This study aims to explore the molecular mechanism of SOD1 filament formation by cysteine overoxidation in sporadic ALS (sALS). In this study, we determined the crystal structure of the double mutant (C57D/C146D) SOD1 that mimics the overoxidation of the disulfide-forming cysteine residues. The structure revealed the open and relaxed conformation of loop IV containing the mutated Asp57. The double mutant SOD1 produced more contagious filaments than wild-type protein, promoting filament formation of the wild-type SOD1 proteins. Importantly, we further found that HOCl treatment to the wild-type SOD1 proteins facilitated their filament formation. We propose a feasible mechanism for SOD1 filament formation in ALS from the wild-type SOD1, suggesting that overoxidized SOD1 is a triggering factor of sALS. Our findings extend our understanding of other neurodegenerative disorders associated with ROS stresses at the molecular level.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/genetics , Cysteine , Disulfides/chemistry , Humans , Mutation , Reactive Oxygen Species , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/chemistry , Zinc/metabolism
12.
Int J Mol Sci ; 23(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36142491

ABSTRACT

Neurodegenerative diseases such as Parkinson's disease (PD) are known to be related to oxidative stress and neuroinflammation, and thus, modulating neuroinflammation offers a possible means of treating PD-associated pathologies. Morin (2',3,4',5,7-pentahydroxy flavone) is a flavonol with anti-oxidative and anti-inflammatory effects found in wines, herbs, and fruits. The present study was undertaken to determine whether a morin-containing diet has protective effects in an MPTP-induced mouse model of PD. Mice were fed a control or morin diet for 34 days, and then MPTP (30 mg/kg, i.p.) was administered daily for 5 days to induce a PD-like pathology. We found that dietary morin prevented MPTP-induced motor dysfunction and ameliorated dopaminergic neuronal damage in striatum (STR) and substantia nigra (SN) in our mouse model. Furthermore, MPTP-induced neuroinflammation was significantly reduced in mice fed morin. In vitro studies showed that morin effectively suppressed glial activations in primary microglia and astrocytes, and biochemical analysis and a docking simulation indicated that the anti-inflammatory effects of morin were mediated by blocking the extracellular signal-regulated kinase (ERK)-p65 pathway. These findings suggest that morin effectively inhibits glial activations and has potential use as a functional food ingredient with therapeutic potential for the treatment of PD and other neurodegenerative diseases associated with neuroinflammation.


Subject(s)
Flavones , Food Ingredients , MPTP Poisoning , Neuroprotective Agents , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Dopaminergic Neurons/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Flavones/pharmacology , Flavonols/metabolism , Flavonols/pharmacology , Flavonols/therapeutic use , MPTP Poisoning/drug therapy , MPTP Poisoning/pathology , Mice , Mice, Inbred C57BL , Microglia/metabolism , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/complications , Parkinson Disease/etiology
13.
J Microbiol ; 60(7): 746-755, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35781628

ABSTRACT

Bacteriophages employ diverse mechanisms to facilitate the proliferation of bacteriophages. The Salmonella-infecting phage SPN3US contains a putative N-acetyltransferase, which is widely found in bacteriophages. However, due to low sequence similarity to the N-acetyltransferases from bacteria and eukaryotic cells, the structure and function of phage-encoded acetyltransferases are mainly unknown. This study determines the crystal structure of the putative N-acetyltransferase of SPN3US in complex with acetyl-CoA. The crystal structure showed a novel homodimeric arrangement stabilized by exchanging the C-terminal α-helix within the dimer. The following biochemical analyses suggested that the phage-encoded acetyltransferase might have a very narrow substrate specificity. Further studies are required to reveal the biochemical activity, which would help elucidate the interaction between the phage and host bacteria in controlling pathogenic bacteria.


Subject(s)
Bacteriophages , Salmonella Phages , Acetyl Coenzyme A , Acetyltransferases/chemistry , Acetyltransferases/genetics , Bacteria/genetics , Polymers
14.
Molecules ; 27(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897955

ABSTRACT

Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6, but it is highly reactive and poisonous in its free form. YggS is a PLP-binding protein found in bacteria and humans that mediates PLP homeostasis by delivering PLP to target enzymes or by performing a protective function. Several biochemical and structural studies of YggS have been reported, but the mechanism by which YggS recognizes PLP has not been fully elucidated. Here, we report a functional and structural analysis of YggS from Fusobacterium nucleatum (FnYggS). The PLP molecule could bind to native FnYggS, but no PLP binding was observed for selenomethionine (SeMet)-derivatized FnYggS. The crystal structure of FnYggS showed a type III TIM barrel fold, exhibiting structural homology with several other PLP-dependent enzymes. Although FnYggS exhibited low (<35%) amino acid sequence similarity with previously studied YggS proteins, its overall structure and PLP-binding site were highly conserved. In the PLP-binding site of FnYggS, the sulfate ion was coordinated by the conserved residues Ser201, Gly218, and Thr219, which were positioned to provide the binding moiety for the phosphate group of PLP. The mutagenesis study showed that the conserved Ser201 residue in FnYggS was the key residue for PLP binding. These results will expand the knowledge of the molecular properties and function of the YggS family.


Subject(s)
Bacterial Proteins/metabolism , Fusobacterium nucleatum , Pyridoxal Phosphate , Bacterial Proteins/chemistry , Binding Sites , Homeostasis , Humans , Phosphates/metabolism , Proteins , Pyridoxal , Pyridoxal Phosphate/metabolism
15.
J Biol Chem ; 298(9): 102256, 2022 09.
Article in English | MEDLINE | ID: mdl-35839855

ABSTRACT

Nuclear lamins maintain the nuclear envelope structure by forming long linear filaments via two alternating molecular arrangements of coiled-coil dimers, known as A11 and A22 binding modes. The A11 binding mode is characterized by the antiparallel interactions between coil 1b domains, whereas the A22 binding mode is facilitated by interactions between the coil 2 domains of lamin. The junction between A11- and A22-interacting dimers in the lamin tetramer produces another parallel head-tail interaction between coil 1a and the C-terminal region of coil 2, called the ACN interaction. During mitosis, phosphorylation in the lamin N-terminal head region by the cyclin-dependent kinase (CDK) complex triggers depolymerization of lamin filaments, but the associated mechanisms remain unknown at the molecular level. In this study, we revealed using the purified proteins that phosphorylation by the CDK1 complex promotes disassembly of lamin filaments by directly abolishing the ACN interaction between coil 1a and the C-terminal portion of coil 2. We further observed that this interaction was disrupted as a result of alteration of the ionic interactions between coil 1a and coil 2. Combined with molecular modeling, we propose a mechanism for CDK1-dependent disassembly of the lamin filaments. Our results will help to elucidate the cell cycle-dependent regulation of nuclear morphology at the molecular level.


Subject(s)
CDC2 Protein Kinase , Intermediate Filaments , Lamin Type A , CDC2 Protein Kinase/chemistry , Humans , Intermediate Filaments/chemistry , Lamin Type A/chemistry , Polymerization , Protein Domains
16.
Proc Natl Acad Sci U S A ; 119(11): e2118002119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35271389

ABSTRACT

SignificanceYeiE has been identified as a master virulence factor of Cronobacter sakazakii. In this study, we determined the crystal structures of the regulatory domain of YeiE in complex with its physiological ligand sulfite ion (SO32-). The structure provides the basis for the molecular mechanisms for sulfite sensing and the ligand-dependent conformational changes of the regulatory domain. The genes under the control of YeiE in response to sulfite were investigated to reveal the functional roles of YeiE in the sulfite tolerance of the bacteria. We propose the molecular mechanism underlying the ability of gram-negative pathogens to defend against the innate immune response involving sulfite, thus providing a strategy to control the pathogenesis of bacteria.


Subject(s)
Bacterial Proteins , Cronobacter sakazakii , Stress, Physiological , Sulfites , Transcription Factors , Virulence Factors , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cronobacter sakazakii/genetics , Cronobacter sakazakii/metabolism , Cronobacter sakazakii/pathogenicity , Crystallization , Ligands , Protein Domains , Sulfites/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Virulence Factors/chemistry , Virulence Factors/genetics
17.
Commun Biol ; 5(1): 267, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338226

ABSTRACT

Lamins are intermediate filaments that form a 3-D meshwork in the periphery of the nuclear envelope. The recent crystal structure of a long fragment of human lamin A/C visualized the tetrameric assembly unit of the central rod domain as a polymerization intermediate. A genetic mutation of S143F caused a phenotype characterized by both progeria and muscular dystrophy. In this study, we determined the crystal structure of the lamin A/C fragment harboring the S143F mutation. The obtained structure revealed the X-shaped interaction between the tetrameric units in the crystals, potentiated by the hydrophobic interactions of the mutated Phe143 residues. Subsequent studies indicated that the X-shaped interaction between the filaments plays a crucial role in disrupting the normal lamin meshwork. Our findings suggest the assembly mechanism of the 3-D meshwork and further provide a molecular framework for understanding the aging process by nuclear deformation.


Subject(s)
Lamin Type A , Progeria , Cell Nucleus , Humans , Hydrophobic and Hydrophilic Interactions , Lamin Type A/genetics , Nuclear Envelope , Progeria/genetics
18.
J Biol Chem ; 298(3): 101626, 2022 03.
Article in English | MEDLINE | ID: mdl-35074425

ABSTRACT

The bacterial second messenger bis-(3'-5')-cyclic diguanylate monophosphate (c-di-GMP) controls various cellular processes, including motility, toxin production, and biofilm formation. c-di-GMP is enzymatically synthesized by GGDEF domain-containing diguanylate cyclases and degraded by HD-GYP domain-containing phosphodiesterases (PDEs) to 2 GMP or by EAL domain-containing PDE-As to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG). Since excess pGpG feedback inhibits PDE-A activity and thereby can lead to the uncontrolled accumulation of c-di-GMP, a PDE that degrades pGpG to 2 GMP (PDE-B) has been presumed to exist. To date, the only enzyme known to hydrolyze pGpG is oligoribonuclease Orn, which degrades all kinds of oligoribonucleotides. Here, we identified a pGpG-specific PDE, which we named PggH, using biochemical approaches in the gram-negative bacteria Vibrio cholerae. Biochemical experiments revealed that PggH exhibited specific PDE activity only toward pGpG, thus differing from the previously reported Orn. Furthermore, the high-resolution structure of PggH revealed the basis for its PDE activity and narrow substrate specificity. Finally, we propose that PggH could modulate the activities of PDE-As and the intracellular concentration of c-di-GMP, resulting in phenotypic changes including in biofilm formation.


Subject(s)
Cyclic GMP/analogs & derivatives , Phosphoric Diester Hydrolases , Vibrio cholerae , Bacterial Proteins/metabolism , Biofilms , Cyclic GMP/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Phosphoric Diester Hydrolases/metabolism , Signal Transduction , Substrate Specificity , Vibrio cholerae/enzymology , Vibrio cholerae/metabolism
19.
Commun Biol ; 4(1): 1397, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34912047

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective death of motor neurons. Mutations in Cu, Zn-superoxide dismutase (SOD1) causing the gain of its toxic property are the major culprit of familial ALS (fALS). The abnormal SOD1 aggregation in the motor neurons has been suggested as the major pathological hallmark of ALS patients. However, the development of pharmacological interventions against SOD1 still needs further investigation. In this study, using ELISA-based chemical screening with wild and mutant SOD1 proteins, we screened a new small molecule, PRG-A01, which could block the misfolding/aggregation of SOD1 or TDP-43. The drug rescued the cell death induced by mutant SOD1 in human neuroblastoma cell line. Administration of PRG-A01 into the ALS model mouse resulted in significant improvement of muscle strength, motor neuron viability and mobility with extended lifespan. These results suggest that SOD1 misfolding/aggregation is a potent therapeutic target for SOD1 related ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Motor Neurons/physiology , Nerve Degeneration/physiopathology , Protein Folding , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Disease Models, Animal , Mutation , Nerve Degeneration/genetics , Superoxide Dismutase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...