Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 537: 165-173, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38070592

ABSTRACT

Thioredoxin system plays an important role in maintaining the cellular redox balance. Recent evidence suggests that thioredoxin (Trx) system may promote cell survival and neuroprotection. In this study, we explored the role of thioredoxin system in neuronal differentiation using a primary mouse cortical neuronal cell culture. First, Trx and Trx reductase (TrxR) protein levels were analyzed in cultured neurons from 1 to 32 days in vitro (DIV). The result showed that Trx and TrxR protein levels time-dependently increased in the neuron cell culture from 1 to 18 DIV. To establish the role of Trx in neuronal differentiation, Trx gene expression was knockdown in cultured neurons using Trx sgRNA CRISPR/Cas9 technology. Treatment with CRISPR/Cas9/Trx sgRNA decreased Trx protein levels and caused a reduction in dendritic outgrowth and branching of cultured neurons. Then, primary cortical neurons were treated with the Trx inhibitor PX12 to block Trx reducing activity. Treatment with PX12 also reduced dendritic outgrowth and branching. Furthermore, PX12 treatment reduced the ratio of phosphorylated cyclic AMP response element-binding protein (CREB)/total CREB protein levels. To investigate whether CREB phosphorylation is redox regulated, SH-SY5Y cells were treated with H2O2, which reduced phosphorylated CREB protein levels and increased CREB thiol oxidation. However, treatment with CB3, a Trx-mimetic tripeptide, rescued H2O2-decreased CREB phosphorylation. Our results suggest that Trx regulates neuronal differentiation and maturation of primary mouse cortical neurons by targeting CREB neurotrophic pathway. Trx may regulate CREB activation by maintaining the cellular redox balance.


Subject(s)
Neuroblastoma , RNA, Guide, CRISPR-Cas Systems , Mice , Humans , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Hydrogen Peroxide/metabolism , Neuroblastoma/metabolism , Thioredoxins/metabolism , Neurons/metabolism , Oxidation-Reduction , Neuronal Outgrowth
2.
Front Cell Infect Microbiol ; 12: 980868, 2022.
Article in English | MEDLINE | ID: mdl-36159650

ABSTRACT

Immunomodulators such as tumour necrosis factor (TNF) inhibitors are used to treat autoimmune conditions by reducing the magnitude of the innate immune response. Dampened innate responses pose an increased risk of new infections by opportunistic pathogens and reactivation of pre-existing latent infections. The alteration in immune response predisposes to increased severity of infections. TNF inhibitors are used to treat autoimmune conditions such as rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, transplant recipients, and inflammatory bowel disease. The efficacies of immunomodulators are shown to be varied, even among those that target the same pathways. Monoclonal antibody-based TNF inhibitors have been shown to induce stronger immunosuppression when compared to their receptor-based counterparts. The variability in activity also translates to differences in risk for infection, moreover, parallel, or sequential use of immunosuppressive drugs and corticosteroids makes it difficult to accurately attribute the risk of infection to a single immunomodulatory drug. Among recipients of TNF inhibitors, Mycobacterium tuberculosis has been shown to be responsible for 12.5-59% of all infections; Pneumocystis jirovecii has been responsible for 20% of all non-viral infections; and Legionella pneumophila infections occur at 13-21 times the rate of the general population. This review will outline the mechanism of immune modulation caused by TNF inhibitors and how they predispose to infection with a focus on Mycobacterium tuberculosis, Legionella pneumophila, and Pneumocystis jirovecii. This review will then explore and evaluate how other immunomodulators and host-directed treatments influence these infections and the severity of the resulting infection to mitigate or treat TNF inhibitor-associated infections alongside antibiotics.


Subject(s)
Autoimmune Diseases , Mycobacterium tuberculosis , Pneumonia , Anti-Bacterial Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use , Humans , Immune System , Immunologic Factors/adverse effects , Immunomodulating Agents , Immunosuppression Therapy/adverse effects , Pneumonia/drug therapy , Prospective Studies , Tumor Necrosis Factor Inhibitors , Tumor Necrosis Factor-alpha
3.
J Neurochem ; 159(3): 479-497, 2021 11.
Article in English | MEDLINE | ID: mdl-32497303

ABSTRACT

In the visual system, retinal axons convey visual information from the outside world to dozens of distinct retinorecipient brain regions and organize that information at several levels, including either at the level of retinal afferents, cytoarchitecture of intrinsic retinorecipient neurons, or a combination of the two. Two major retinorecipient nuclei which are densely innervated by retinal axons are the dorsal lateral geniculate nucleus, which is important for classical image-forming vision, and ventral LGN (vLGN), which is associated with non-image-forming vision. The neurochemistry, cytoarchitecture, and retinothalamic connectivity in vLGN remain unresolved, raising fundamental questions of how it receives and processes visual information. To shed light on these important questions, used in situ hybridization, immunohistochemistry, and genetic reporter lines to identify and characterize novel neuronal cell types in mouse vLGN. Not only were a high percentage of these cells GABAergic, we discovered transcriptomically distinct GABAergic cell types reside in the two major laminae of vLGN, the retinorecipient, external vLGN (vLGNe) and the non-retinorecipient, internal vLGN (vLGNi). Furthermore, within vLGNe, we identified transcriptionally distinct subtypes of GABAergic cells that are distributed into four adjacent sublaminae. Using trans-synaptic viral tracing and in vitro electrophysiology, we found cells in each these vLGNe sublaminae receive monosynaptic inputs from retina. These results not only identify novel subtypes of GABAergic cells in vLGN, they suggest the subtype-specific laminar distribution of retinorecipient cells in vLGNe may be important for receiving, processing, and transmitting light-derived signals in parallel channels of the subcortical visual system.


Subject(s)
GABAergic Neurons/physiology , Geniculate Bodies/cytology , Animals , Axons , Electrophysiological Phenomena , Immunohistochemistry , Light , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Retina/cytology , Retina/physiology , Synapses/physiology , Transcriptome , Vision, Ocular/physiology , Visual Pathways/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...