Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Biotechnol ; 42(2): 265-274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37142704

ABSTRACT

Antibiotic treatments have detrimental effects on the microbiome and lead to antibiotic resistance. To develop a phage therapy against a diverse range of clinically relevant Escherichia coli, we screened a library of 162 wild-type (WT) phages, identifying eight phages with broad coverage of E. coli, complementary binding to bacterial surface receptors, and the capability to stably carry inserted cargo. Selected phages were engineered with tail fibers and CRISPR-Cas machinery to specifically target E. coli. We show that engineered phages target bacteria in biofilms, reduce the emergence of phage-tolerant E. coli and out-compete their ancestral WT phages in coculture experiments. A combination of the four most complementary bacteriophages, called SNIPR001, is well tolerated in both mouse models and minipigs and reduces E. coli load in the mouse gut better than its constituent components separately. SNIPR001 is in clinical development to selectively kill E. coli, which may cause fatal infections in hematological cancer patients.


Subject(s)
Bacteriophages , Escherichia coli , Animals , Humans , Mice , Swine , Escherichia coli/genetics , Bacteriophages/genetics , CRISPR-Cas Systems/genetics , Swine, Miniature , Anti-Bacterial Agents
2.
Sci Rep ; 10(1): 13121, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753585

ABSTRACT

Antimicrobial peptides (AMPs) are central components of the innate immune system providing protection against pathogens. Yet, serum and tissue concentrations vary between individuals and with disease conditions. We demonstrate that the human AMP LL-37 lowers the susceptibility to vancomycin in the community-associated methicillin-resistant S. aureus (CA-MRSA) strain FPR3757 (USA300). Vancomycin is used to treat serious MRSA infections, but treatment failures occur despite MRSA strains being tested susceptible according to standard susceptibility methods. Exposure to physiologically relevant concentrations of LL-37 increased the minimum inhibitory concentration (MIC) of S. aureus towards vancomycin by 75%, and resulted in shortened lag-phase and increased colony formation at sub-inhibitory concentrations of vancomycin. Computer simulations using a mathematical antibiotic treatment model indicated that a small increase in MIC might decrease the efficacy of vancomycin in clearing a S. aureus infection. This prediction was supported in a Galleria mellonella infection model, where exposure of S. aureus to LL-37 abolished the antimicrobial effect of vancomycin. Thus, physiological relevant concentrations of LL-37 reduce susceptibility to vancomycin, indicating that tissue and host specific variations in LL-37 concentrations may influence vancomycin susceptibility in vivo.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Animals , Antimicrobial Cationic Peptides/blood , Antimicrobial Cationic Peptides/metabolism , Dose-Response Relationship, Drug , Drug Interactions , Lepidoptera/microbiology , Microbial Sensitivity Tests , Cathelicidins
3.
PLoS Pathog ; 15(7): e1007888, 2019 07.
Article in English | MEDLINE | ID: mdl-31276485

ABSTRACT

Temperate phages are bacterial viruses that as part of their life cycle reside in the bacterial genome as prophages. They are found in many species including most clinical strains of the human pathogens, Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Previously, temperate phages were considered as only bacterial predators, but mounting evidence point to both antagonistic and mutualistic interactions with for example some temperate phages contributing to virulence by encoding virulence factors. Here we show that generalized transduction, one type of bacterial DNA transfer by phages, can create conditions where not only the recipient host but also the transducing phage benefit. With antibiotic resistance as a model trait we used individual-based models and experimental approaches to show that antibiotic susceptible cells become resistant to both antibiotics and phage by i) integrating the generalized transducing temperate phages and ii) acquiring transducing phage particles carrying antibiotic resistance genes obtained from resistant cells in the environment. This is not observed for non-generalized transducing temperate phages, which are unable to package bacterial DNA, nor for generalized transducing virulent phages that do not form lysogens. Once established, the lysogenic host and the prophage benefit from the existence of transducing particles that can shuffle bacterial genes between lysogens and for example disseminate resistance to antibiotics, a trait not encoded by the phage. This facilitates bacterial survival and leads to phage population growth. We propose that generalized transduction can function as a mutualistic trait where temperate phages cooperate with their hosts to survive in rapidly-changing environments. This implies that generalized transduction is not just an error in DNA packaging but is selected for by phages to ensure their survival.


Subject(s)
Bacteriophages/genetics , Bacteriophages/pathogenicity , Transduction, Genetic , Bacteriophages/physiology , Computer Simulation , DNA Packaging/genetics , Drug Resistance, Bacterial/genetics , Evolution, Molecular , Humans , Lysogeny/genetics , Models, Biological , Prophages/genetics , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Salmonella typhimurium/virology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/virology , Virulence/genetics
4.
Vet Clin Pathol ; 47(4): 560-574, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30586190

ABSTRACT

BACKGROUND: Staphylococcus aureus is an opportunistic pathogen with the ability to form mobile planktonic aggregates during growth, in vitro. The in vivo pathophysiologic effects of S aureus aggregates on host responses are unknown. Knowledge of these could aid in combating infections. OBJECTIVE: This study aimed to investigate the effect of increasing concentrations of two different aggregating S aureus strains on the hemostatic and inflammatory host responses in canine whole blood. The hypothesis was that aggregating bacteria would induce pronounced hemostatic and inflammatory responses. METHODS: Citrate-stabilized whole blood from 10 healthy dogs was incubated with two strains of aggregating S aureus at three different concentrations. Each sample was analyzed using tissue factor-thromboelastography (TF-TEG) and the formed clot was investigated with electron microscopy. The plasma activated partial thromboplastin time (aPTT), prothrombin time (PT), fibrinogen, and D-dimer tests were measured. Bacteria-leukocyte binding was evaluated with flow cytometry, and neutrophil phagocytosis was assessed using light and transmission electron microscopy. RESULTS: The highest concentration of bacteria resulted in a significantly shortened TF-TEG initiation time, decreased alpha, maximum amplitude, global strength, and increased lysis. In addition, significantly shortened PT, decreased fibrinogen, and increased D-dimers were demonstrated at the highest concentration of bacteria. Lower concentrations of bacteria showed no differences in TF-TEG when compared with controls. The findings were similar for both S aureus strains. Increased concentration-dependent binding of bacteria and leukocytes and neutrophil bacterial phagocytosis was observed. CONCLUSIONS: Two strains of S aureus induced alterations of clot formation in concentrations where bacterial aggregates were formed. A concentration-dependent cellular inflammatory response was observed.


Subject(s)
Blood Coagulation , Dog Diseases/microbiology , Fibrinolysis , Lymphocytes/microbiology , Monocytes/microbiology , Neutrophils/microbiology , Phagocytosis , Staphylococcal Infections/veterinary , Animals , Bacterial Adhesion , Dog Diseases/blood , Dog Diseases/physiopathology , Dogs , Female , Lymphocytes/pathology , Male , Monocytes/pathology , Neutrophils/pathology , Staphylococcal Infections/microbiology , Staphylococcal Infections/physiopathology , Staphylococcus aureus/physiology
5.
Proc Natl Acad Sci U S A ; 115(50): E11771-E11779, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30463950

ABSTRACT

Coagulation is an innate defense mechanism intended to limit blood loss and trap invading pathogens during infection. However, Staphylococcus aureus has the ability to hijack the coagulation cascade and generate clots via secretion of coagulases. Although many S. aureus have this characteristic, some do not. The population dynamics regarding this defining trait have yet to be explored. We report here that coagulases are public goods that confer protection against antimicrobials and immune factors within a local population or community, thus promoting growth and virulence. By utilizing variants of a methicillin-resistant S. aureus we infer that the secretion of coagulases is a cooperative trait, which is subject to exploitation by invading mutants that do not produce the public goods themselves. However, overexploitation, "tragedy of the commons," does not occur at clinically relevant conditions. Our micrographs indicate this is due to spatial segregation and population viscosity. These findings emphasize the critical role of coagulases in a social evolution context and provide a possible explanation as to why the secretion of these public goods is maintained in mixed S. aureus communities.


Subject(s)
Coagulase/physiology , Methicillin-Resistant Staphylococcus aureus/enzymology , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Staphylococcal Infections/microbiology , Biofilms/growth & development , Blood Coagulation , Coagulase/genetics , Humans , Microbiota/genetics , Microbiota/physiology , Models, Biological , Mutation , Staphylococcal Infections/blood , Virulence
6.
Front Microbiol ; 8: 2418, 2017.
Article in English | MEDLINE | ID: mdl-29270158

ABSTRACT

Human strains of Staphylococcus aureus commonly carry the bacteriophage ΦSa3 that encodes immune evasion factors. Recently, this prophage has been found in livestock-associated, methicillin resistant S. aureus (MRSA) CC398 strains where it may promote human colonization. Here, we have addressed if exposure to biocidal products induces phage transfer, and find that during co-culture, Φ13 from strain 8325, belonging to ΦSa3 group, is induced and transferred from a human strain to LA-MRSA CC398 when exposed to sub-lethal concentrations of commercial biocides containing hydrogen peroxide. Integration of ΦSa3 in LA-MRSA CC398 occurs at multiple positions and the integration site influences the stability of the prophage. We did not observe integration in hlb encoding ß-hemolysin that contains the preferred ΦSa3 attachment site in human strains, and we demonstrate that this is due to allelic variation in CC398 strains that disrupts the phage attachment site, but not the expression of ß-hemolysin. Our results show that hydrogen peroxide present in biocidal products stimulate transfer of ΦSa3 from human to LA-MRSA CC398 strains and that in these strains prophage stability depends on the integration site. Knowledge of ΦSa3 transfer and stability between human and livestock strains may lead to new intervention measures directed at reducing human infection by LA-MRSA strains.

7.
Trends Microbiol ; 25(11): 893-905, 2017 11.
Article in English | MEDLINE | ID: mdl-28641931

ABSTRACT

Staphylococcus aureus is a serious human pathogen with remarkable adaptive powers. Antibiotic-resistant clones rapidly emerge mainly by acquisition of antibiotic-resistance genes from other S. aureus strains or even from other genera. Transfer is mediated by a diverse complement of mobile genetic elements and occurs primarily by conjugation or bacteriophage transduction, with the latter traditionally being perceived as the primary route. Recent work on conjugation and transduction suggests that transfer by these mechanisms may be more extensive than previously thought, in terms of the range of plasmids that can be transferred by conjugation and the efficiency with which transduction occurs. Here, we review the main routes of antibiotic resistance gene transfer in S. aureus in the context of its biology as a human commensal and a life-threatening pathogen.


Subject(s)
Conjugation, Genetic , Drug Resistance, Microbial/genetics , Staphylococcal Infections/drug therapy , Staphylococcus Phages/genetics , Staphylococcus aureus/genetics , Transduction, Genetic , Anti-Bacterial Agents/pharmacology , Humans
8.
Nat Commun ; 7: 13333, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27819286

ABSTRACT

Prophages are quiescent viruses located in the chromosomes of bacteria. In the human pathogen, Staphylococcus aureus, prophages are omnipresent and are believed to be responsible for the spread of some antibiotic resistance genes. Here we demonstrate that release of phages from a subpopulation of S. aureus cells enables the intact, prophage-containing population to acquire beneficial genes from competing, phage-susceptible strains present in the same environment. Phage infection kills competitor cells and bits of their DNA are occasionally captured in viral transducing particles. Return of such particles to the prophage-containing population can drive the transfer of genes encoding potentially useful traits such as antibiotic resistance. This process, which can be viewed as 'auto-transduction', allows S. aureus to efficiently acquire antibiotic resistance both in vitro and in an in vivo virulence model (wax moth larvae) and enables it to proliferate under strong antibiotic selection pressure. Our results may help to explain the rapid exchange of antibiotic resistance genes observed in S. aureus.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Prophages/physiology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/physiology , Anti-Bacterial Agents/therapeutic use , DNA, Bacterial/genetics , Gene Transfer, Horizontal/genetics , Host-Pathogen Interactions/genetics , Humans , Staphylococcal Infections/microbiology , Staphylococcus aureus/virology
9.
Microorganisms ; 4(3)2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27681928

ABSTRACT

Biofilms formed by Staphylococcus aureus is a serious complication to the use of medical implants. A central part of the pathogenesis relies on S. aureus' ability to adhere to host extracellular matrix proteins, which adsorb to medical implants and stimulate biofilm formation. Being coagulase positive, S. aureus furthermore induces formation of fibrin fibers from fibrinogen in the blood. Consequently, we hypothesized that fibrin is a key component of the extracellular matrix of S. aureus biofilms under in vivo conditions, and that the recalcitrance of biofilm infections can be overcome by combining antibiotic treatment with a fibrinolytic drug. We quantified S. aureus USA300 biofilms grown on peg-lids in brain heart infusion (BHI) broth with 0%-50% human plasma. Young (2 h) and mature (24 h) biofilms were then treated with streptokinase to determine if this lead to dispersal. Then, the minimal biofilm eradication concentration (MBEC) of 24 h old biofilms was measured for vancomycin and daptomycin alone or in combination with 10 µg/mL rifampicin in the presence or absence of streptokinase in the antibiotic treatment step. Finally, biofilms were visualized by confocal laser scanning microscopy. Addition of human plasma stimulated biofilm formation in BHI in a dose-dependent manner, and biofilms could be partially dispersed by streptokinase. The biofilms could be eradicated with physiologically relevant concentrations of streptokinase in combination with rifampicin and vancomycin or daptomycin, which are commonly used antibiotics for treatment of S. aureus infections. Fibronolytic drugs have been used to treat thromboembolic events for decades, and our findings suggest that their use against biofilm infections has the potential to improve the efficacy of antibiotics in treatment of S. aureus biofilm infections.

10.
Front Microbiol ; 7: 2018, 2016.
Article in English | MEDLINE | ID: mdl-28066345

ABSTRACT

The emergence of antimicrobial resistance severely threatens our ability to treat bacterial infections. While acquired resistance has received considerable attention, relatively little is known of intrinsic resistance that allows bacteria to naturally withstand antimicrobials. Gene products that confer intrinsic resistance to antimicrobial agents may be explored for alternative antimicrobial therapies, by potentiating the efficacy of existing antimicrobials. In this study, we identified the intrinsic resistome to a broad spectrum of antimicrobials in the human pathogen, Staphylococcus aureus. We screened the Nebraska Transposon Mutant Library of 1920 single-gene inactivations in S. aureus strain JE2, for increased susceptibility to the anti-staphylococcal antimicrobials (ciprofloxacin, oxacillin, linezolid, fosfomycin, daptomycin, mupirocin, vancomycin, and gentamicin). Sixty-eight mutants were confirmed by E-test to display at least twofold increased susceptibility to one or more antimicrobial agents. The majority of the identified genes have not previously been associated with antimicrobial susceptibility in S. aureus. For example, inactivation of genes encoding for subunits of the ATP synthase, atpA, atpB, atpG and atpH, reduced the minimum inhibitory concentration (MIC) of gentamicin 16-fold. To elucidate the potential of the screen, we examined treatment efficacy in the Galleria mellonella infection model. Gentamicin efficacy was significantly improved, when treating larvae infected with the atpA mutant compared to wild type cells with gentamicin at a clinically relevant concentration. Our results demonstrate that many gene products contribute to the intrinsic antimicrobial resistance of S. aureus. Knowledge of these intrinsic resistance determinants provides alternative targets for compounds that may potentiate the efficacy of existing antimicrobial agents against this important pathogen.

12.
mBio ; 6(1)2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25587013

ABSTRACT

UNLABELLED: Resistance of Staphylococcus aureus to beta-lactam antibiotics has led to increasing use of the glycopeptide antibiotic vancomycin as a life-saving treatment for major S. aureus infections. Coinfection by an unrelated bacterial species may necessitate concurrent treatment with a second antibiotic that targets the coinfecting pathogen. While investigating factors that affect bacterial antibiotic sensitivity, we discovered that susceptibility of S. aureus to vancomycin is reduced by concurrent exposure to colistin, a cationic peptide antimicrobial employed to treat infections by Gram-negative pathogens. We show that colistin-induced vancomycin tolerance persists only as long as the inducer is present and is accompanied by gene expression changes similar to those resulting from mutations that produce stably inherited reduction of vancomycin sensitivity (vancomycin-intermediate S. aureus [VISA] strains). As colistin-induced vancomycin tolerance is reversible, it may not be detected by routine sensitivity testing and may be responsible for treatment failure at vancomycin doses expected to be clinically effective based on such routine testing. IMPORTANCE: Commonly, antibiotic resistance is associated with permanent genetic changes, such as point mutations or acquisition of resistance genes. We show that phenotypic resistance can arise where changes in gene expression result in tolerance to an antibiotic without any accompanying genetic changes. Specifically, methicillin-resistant Staphylococcus aureus (MRSA) behaves like vancomycin-intermediate S. aureus (VISA) upon exposure to colistin, which is currently used against infections by Gram-negative bacteria. Vancomycin is a last-resort drug for treatment of serious S. aureus infections, and VISA is associated with poor clinical prognosis. Phenotypic and reversible resistance will not be revealed by standard susceptibility testing and may underlie treatment failure.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Vancomycin Resistance , Vancomycin/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
13.
Microbiology (Reading) ; 160(Pt 11): 2551-2559, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25143058

ABSTRACT

Multi-stress resistance is a widely documented and fascinating phenotype of lactococci where single mutations, preferentially in genes involved in nucleotide metabolism and phosphate uptake, result in elevated tolerance to multiple stresses simultaneously. In this report, we have analysed the metabolic basis behind this multi-stress-resistance phenotype in Lactococcus lactis subsp. cremoris MG1363 using acid stress as a model of multi-stress resistance. Surprisingly, we found that L. lactis MG1363 is fully resistant to pH 3.0 in the chemically defined SA medium, contrary to its sensitivity in the rich and complex M17 medium. When salvage of purines and subsequent conversion to GTP was permitted in various genetic backgrounds of L. lactis MG1363, the cells became sensitive to acid stress, indicating that an excess of guanine nucleotides induces stress sensitivity. The addition of phosphate to the acid-stress medium increased the stress sensitivity of L. lactis MG1363. It is also shown that high intracellular guanine nucleotide pools confer increased sensitivity to high temperatures, thus showing that it is indeed a multi-stress phenotype. Our analysis suggests that an increased level of guanine nucleotides is formed as a result of an improved conversion of guanosine in the salvage pathway. Based upon our findings, we suggest that L. lactis MG1363 is naturally multi-stress resistant in habitats devoid of any purine source. However, any exogenous purine that results in increased guanine nucleotide pools renders the bacterium sensitive to environmental stresses.


Subject(s)
Lactococcus lactis/physiology , Purines/metabolism , Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Lactococcus lactis/genetics , Stress, Physiological
14.
mBio ; 3(6): e00459-12, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23143800

ABSTRACT

UNLABELLED: Staphylococcus aureus is a human commensal that at times turns into a serious bacterial pathogen causing life-threatening infections. For the delicate control of virulence, S. aureus employs the agr quorum-sensing system that, via the intracellular effector molecule RNAIII, regulates virulence gene expression. We demonstrate that the presence of the agr locus imposes a fitness cost on S. aureus that is mediated by the expression of RNAIII. Further, we show that exposure to sublethal levels of the antibiotics ciprofloxacin, mupirocin, and rifampin, each targeting separate cellular functions, markedly increases the agr-mediated fitness cost by inducing the expression of RNAIII. Thus, the extensive use of antibiotics in hospitals may explain why agr-negative variants are frequently isolated from hospital-acquired S. aureus infections but rarely found among community-acquired S. aureus strains. Importantly, agr deficiency correlates with increased duration of and mortality due to bacteremia during antibiotic treatment and with a higher frequency of glycopeptide resistance than in agr-carrying strains. Our results provide an explanation for the frequent isolation of agr-defective strains from hospital-acquired S. aureus infections and suggest that the adaptability of S. aureus to antibiotics involves the agr locus. IMPORTANCE: Staphylococcus aureus is the most frequently isolated pathogen in intensive care units and a common cause of nosocomial infections, resulting in a high degree of morbidity and mortality. Surprisingly, a large fraction (15 to 60%) of hospital-isolated S. aureus strains are agr defective and lack the main quorum-sensing-controlled virulence regulatory system. This is a problem, as agr-defective strains are associated with a mortality level in bacteremic infections and a probability of glycopeptide resistance greater than those of other strains. We show here that agr-negative strains have a fitness advantage over agr-positive strains in the presence of sublethal concentrations of some antibiotics and that the fitness defect of agr-positive cells is caused by antibiotic-mediated expression of the agr effector molecule RNAIII. These results offer an explanation of the frequent isolation of agr-defective S. aureus strains in hospitals and will influence how we treat S. aureus infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Quorum Sensing , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Staphylococcus aureus/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
15.
BMC Res Notes ; 5: 457, 2012 Aug 25.
Article in English | MEDLINE | ID: mdl-22920188

ABSTRACT

BACKGROUND: The aim of this study was to investigate the effect of various classes of clinically relevant antibiotics at sub-lethal concentrations on virulence gene expression and biofilm formation in Staphylococcus aureus. FINDINGS: LacZ promoter fusions of genes related to staphylococcal virulence were used to monitor the effects of antibiotics on gene expression in a disc diffusion assay. The selected genes were hla and spa encoding α-hemolysin and Protein A, respectively and RNAIII, the effector molecule of the agr quorum sensing system. The results were confirmed by quantitative real-time PCR. Additionally, we monitored the effect of subinhibitory concentrations of antibiotics on the ability of S. aureus to form biofilm in a microtiter plate assay. The results show that sub-lethal antibiotic concentrations diversely modulate expression of RNAIII, hla and spa. Consistently, expression of all three genes were repressed by aminoglycosides and induced by fluoroquinolones and penicillins. In contrast, the ß-lactam sub-group cephalosporins enhanced expression of RNAIII and hla but diversely affected expression of spa. The compounds cefalotin, cefamandole, cefoxitin, ceftazidime and cefixine were found to up-regulate spa, while down-regulation was observed for cefuroxime, cefotaxime and cefepime. Interestingly, biofilm assays demonstrated that the spa-inducing cefalotin resulted in less biofilm formation compared to the spa-repressing cefotaxime. CONCLUSIONS: We find that independently of the cephalosporin generation, cephalosporins oppositely regulate spa expression and biofilm formation. Repression of spa expression correlates with the presence of a distinct methyloxime group while induction correlates with an acidic substituted oxime group. As cephalosporines target the cell wall penicillin binding proteins we speculate that subtle differences in this interaction fine-tunes spa expression independently of agr.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Cell Wall/drug effects , Staphylococcus aureus/drug effects , Transcription, Genetic , Microbial Sensitivity Tests , RNA Polymerase III/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
16.
PLoS One ; 7(7): e41075, 2012.
Article in English | MEDLINE | ID: mdl-22815921

ABSTRACT

Bacterial cells are mostly studied during planktonic growth although in their natural habitats they are often found in communities such as biofilms with dramatically different physiological properties. We have examined another type of community namely cellular aggregates observed in strains of the human pathogen Staphylococcus aureus. By laser-diffraction particle-size analysis (LDA) we show, for strains forming visible aggregates, that the aggregation starts already in the early exponential growth phase and proceeds until post-exponential phase where more than 90% of the population is part of the aggregate community. Similar to some types of biofilm, the structural component of S. aureus aggregates is the polysaccharide intercellular adhesin (PIA). Importantly, PIA production correlates with the level of aggregation whether altered through mutations or exposure to sub-inhibitory concentrations of selected antibiotics. While some properties of aggregates resemble those of biofilms including increased mutation frequency and survival during antibiotic treatment, aggregated cells displayed higher metabolic activity than planktonic cells or cells in biofilm. Thus, our data indicate that the properties of cells in aggregates differ in some aspects from those in biofilms. It is generally accepted that the biofilm life style protects pathogens against antibiotics and the hostile environment of the host. We speculate that in aggregate communities S. aureus increases its tolerance to hazardous environments and that the combination of a biofilm-like environment with mobility has substantial practical and clinical importance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Plankton/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Bacterial Proteins/metabolism , Biofilms , DNA Mutational Analysis , Lasers , Luminescent Proteins/metabolism , Microbial Sensitivity Tests , Microscopy, Electron, Scanning/methods , Mutation , Particle Size , Plankton/metabolism , Polysaccharides/chemistry , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Stem Cells
17.
Appl Environ Microbiol ; 76(21): 7085-92, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20851990

ABSTRACT

AbiV is an abortive infection protein that inhibits the lytic cycle of several virulent phages infecting Lactococcus lactis, while a mutation in the phage gene sav confers insensitivity to AbiV. In this study, we have further characterized the effects of the bacterial AbiV and its interaction with the phage p2 protein SaV. First, we showed that during phage infection of lactococcal AbiV(+) cells, AbiV rapidly inhibited protein synthesis. Among early phage transcripts, sav gene transcription was slightly inhibited while the SaV protein could not be detected. Analyses of other phage p2 mRNAs and proteins suggested that AbiV blocks the activation of late gene transcription, probably by a general inhibition of translation. Using size exclusion chromatography coupled with on-line static light scattering and refractometry, as well as fluorescence quenching experiments, we also demonstrated that both AbiV and SaV formed homodimers and that they strongly and specifically interact with each other to form a stable protein complex.


Subject(s)
Bacterial Proteins/physiology , Bacteriophages/pathogenicity , Lactococcus lactis/virology , Viral Regulatory and Accessory Proteins/physiology , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Blotting, Western , Genes, Viral/genetics , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Protein Biosynthesis/genetics , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , Spectrometry, Fluorescence , Transcription, Genetic/genetics , Transcription, Genetic/physiology , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism
18.
Environ Microbiol ; 11(8): 1971-82, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19508553

ABSTRACT

Genetic, structural and physiological differences between strains of the marine bacterium Cellulophaga baltica MM#3 (Flavobacteriaceae) developing in response to the activity of two virulent bacteriophages, Phi S(M) and Phi S(T), was investigated during 3 weeks incubation in chemostat cultures. A distinct strain succession towards increased phage resistance and a diversification of the metabolic properties was observed. During the incubation the bacterial population diversified from a single strain, which was sensitive to 24 tested Cellulophaga phages, into a multistrain and multiresistant population, where the dominant strains had lost susceptibility to up to 22 of the tested phages. By the end of the experiment the cultures reached a quasi steady state dominated by Phi S(T)-resistant and Phi S(M) + Phi S(T)-resistant strains coexisting with small populations of phage-sensitive strains sustaining both phages at densities of > 10(6) plaque forming units (pfu) ml(-1). Loss of susceptibility to phage infection was associated with a reduction in the strains' ability to metabolize various carbon sources as demonstrated by BIOLOG assays. This suggested a cost of resistance in terms of reduced physiological capacity. However, there was no direct correlation between the degree of resistance and the loss of metabolic properties, suggesting either the occurrence of compensatory mutations in successful strains or that the cost of resistance in some strains was associated with properties not resolved by the BIOLOG assay. The study represents the first direct demonstration of phage-driven generation of functional diversity within a marine bacterial host population with significant implications for both phage susceptibility and physiological properties. We propose, therefore, that phage-mediated selection for resistant strains contributes significantly to the extensive microdiversity observed within specific bacterial species in marine environments.


Subject(s)
Bacteriophages/pathogenicity , Biodiversity , Flavobacterium/classification , Flavobacterium/virology , Adaptation, Biological , Flavobacterium/genetics , Flavobacterium/isolation & purification , Host-Pathogen Interactions , RNA, Ribosomal, 16S/genetics , Selection, Genetic
19.
Appl Environ Microbiol ; 75(10): 3358-61, 2009 May.
Article in English | MEDLINE | ID: mdl-19286782

ABSTRACT

AbiV is a chromosomally encoded phage resistance mechanism that is silent in the wild-type phage-sensitive strain Lactococcus lactis subsp. cremoris MG1363. Spontaneous phage-resistant mutants of L. lactis MG1363 were analyzed by reverse transcriptase PCR and shown to express AbiV. This expression was related to a reorganization in the upstream region of abiV. Transfer of abiV between two lactococcal strains, most likely by conjugation, was also demonstrated. To our knowledge, this is the first report of natural transfer of a chromosomally encoded phage resistance mechanism.


Subject(s)
Bacteriophages/growth & development , Gene Transfer, Horizontal , Genes, Bacterial , Lactococcus lactis/genetics , Lactococcus lactis/virology , Chromosomes, Bacterial , Conjugation, Genetic , Gene Expression Profiling , Gene Order , Mutation , Reverse Transcriptase Polymerase Chain Reaction
20.
Appl Environ Microbiol ; 75(8): 2484-94, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19270128

ABSTRACT

Lactococcus lactis phage mutants that are insensitive to the recently characterized abortive infection mechanism AbiV were isolated and analyzed in an effort to elucidate factors involved in the sensitivity to AbiV. Whole-genome sequencing of the phage mutants p2.1 and p2.2 revealed mutations in an orf that is transcribed early, indicating that this orf was responsible for AbiV sensitivity. Sequencing of the homologous regions in the genomes of other AbiV-insensitive mutants derived from p2 and six other lactococcal wild-type phages revealed point mutations in the homologous orf sequences. The orf was named sav (for sensitivity to AbiV), and the encoded polypeptide was named SaV. The purification of a His-tagged SaV polypeptide by gel filtration suggested that the polypeptide formed a dimer in its native form. The overexpression of SaV in L. lactis and Escherichia coli led to a rapid toxic effect. Conserved, evolutionarily related regions in SaV polypeptides of different phage groups are likely to be responsible for the AbiV-sensitive phenotype and the toxicity.


Subject(s)
Bacteriophages/genetics , Bacteriophages/isolation & purification , Genes, Viral , Lactococcus lactis/virology , Mutation, Missense , Chromatography, Gel , Cloning, Molecular , DNA, Viral/chemistry , DNA, Viral/genetics , Dimerization , Escherichia coli/genetics , Genome, Viral , Molecular Sequence Data , Sequence Analysis, DNA , Viral Proteins/genetics , Viral Proteins/isolation & purification , Viral Proteins/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...