Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876764

ABSTRACT

The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.


Subject(s)
Iron/metabolism , Neurotransmitter Agents/biosynthesis , Nuclear Proteins/metabolism , Pterins/chemistry , Zinc Finger Protein Gli2/metabolism , Humans , Iron/chemistry , Nuclear Proteins/chemistry , Oxygen/metabolism , Pterins/metabolism , Tryptophan/chemistry , Tryptophan/metabolism , Zinc Finger Protein Gli2/chemistry
2.
J Inorg Biochem ; 104(2): 136-45, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19939457

ABSTRACT

Insight into the nature of oxygen activation in tryptophan hydroxylase has been obtained from density functional computations. Conformations of O(2)-bound intermediates have been studied with oxygen trans to glutamate and histidine, respectively. An O(2)-adduct with O(2)trans to histidine (O(his)) and a peroxo intermediate with peroxide trans to glutamate (P(glu)) were found to be consistent (0.57-0.59mm/s) with experimental Mössbauer isomer shifts (0.55mm/s) and had low computed free energies. The weaker trans influence of histidine is shown to give rise to a bent O(2) coordination mode with O(2) pointing towards the cofactor and a more activated O-O bond (1.33A) than in O(glu) (1.30A). It is shown that the cofactor can hydrogen bond to O(2) and activate the O-O bond further (from 1.33 to 1.38A). The O(his) intermediate leads to a ferryl intermediate (F(his)) with an isomer shift of 0.34mm/s, also consistent with the experimental value (0.25mm/s) which we propose as the structure of the hydroxylating intermediate, with the tryptophan substrate well located for further reaction 3.5A from the ferryl group. Based on the optimized transition states, the activation barriers for the two paths (glu and his) are similar, so a two-state scenario involving O(his) and P(glu) is possible. A structure of the activated deoxy state which is high-spin implies that the valence electron count has been lowered from 18 to 16 (glutamate becomes bidentate), giving a "green light" that invites O(2)-binding. Our mechanism of oxygen activation in tryptophan hydroxylase does not require inversion of spin, which may be an important observation.


Subject(s)
Models, Chemical , Oxygen/chemistry , Tryptophan Hydroxylase/chemistry , Tryptophan/chemistry , Animals , Calibration , Catalysis , Catalytic Domain , Computer Simulation , Electrons , Humans , Kinetics , Models, Molecular , Molecular Conformation , Molecular Structure , Oxygen/metabolism , Protein Structure, Tertiary , Substrate Specificity , Thermodynamics , Tryptophan/metabolism , Tryptophan Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...