Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(8): e29462, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38638959

ABSTRACT

This research evaluated the relationship between daily new Coronavirus Disease 2019 (COVID-19) cases and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) concentrations in wastewater, followed by effects of differential SARS-CoV-2 shedding loads across various COVID-19 outbreaks. Linear regression analyses were utilized to examine the lead time of the SARS-CoV-2 signal in wastewater relative to new COVID-19 clinical cases. During the Delta wave, no lead time was evident, highlighting limited predictive capability of wastewater monitoring during this phase. However, significant lead times were observed during the Omicron wave, potentially attributed to testing capacity overload and subsequent case reporting delays or changes in shedding patterns. During the Post-Omicron wave (Febuary 23 to May 19, 2022), no lead time was discernible, whereas following the lifting of the COVID-19 state of emergency (May 30, 2022 to May 30, 2023), the correlation coefficient increased and demonstrated the potential of wastewater surveillance as an early warning system. Subsequently, we explored the virus shedding in wastewater through feces, operationalized as the ratio of SARS-CoV-2 concentrations to daily new COVID-19 cases. This ratio varied significantly across the Delta, Omicron, other variants and post-state-emergency phases, with the Kruskal-Wallis H test confirming a significant difference in medians across these stages (P < 0.0001). Despite its promise, wastewater surveillance of COVID-19 disease prevalence presents several challenges, including virus shedding variability, data interpretation complexity, the impact of environmental factors on viral degradation, and the lack of standardized testing procedures. Overall, our findings offer insights into the correlation between COVID-19 cases and wastewater viral concentrations, potential variation in SARS-CoV-2 shedding in wastewater across different pandemic phases, and underscore the promise and limitations of wastewater surveillance as an early warning system for disease prevalence trends.

2.
Water Environ Res ; 96(2): e10990, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38291828

ABSTRACT

The study evaluated the removal efficacy of per- and poly-fluoroalkyl substances (PFAS) across various advanced water treatment (AWT) processes in a field-scale AWT train using secondary effluent samples from a full-scale water reclamation facility (WRF). Samples collected from April to October 2020 revealed PFCAs as the dominant PFAS compounds in the WRF secondary effluent, with PFPeA having the highest average concentration and PFSAs in notably lower amounts. Temporal fluctuations in total PFAS concentrations peaked in September 2020, which may reflect the seasonality in PFAS discharges related to applications like AFFFs and pesticides. In assessing AWT processes, coagulation-flocculation-clarification-filtration system showed no notable PFAS reduction, while ozonation resulted in elevated PFBS and PFBA concentrations. Biological activated carbon (BAC) filtration effectively removed long-chain PFAS like PFOS and PFHxS but saw increased concentrations of short-chain PFAS post-treatment. Granular activated carbon (GAC) filtration was the most effective treatment, reducing all PFSAs below the detection limits and significantly decreasing most PFCAs, though short-chain PFCAs persisted. UV treatment did not remove short-chain PFCAs such as PFBA, PFPeA, and PFHxA. The findings highlight the efficacy of AWT processes like GAC in PFAS reduction for potable reuse, but also underscore the challenge presented by short-chain PFAS, emphasizing the need for tailored treatment strategies. PRACTITIONER POINTS: Secondary effluents showed higher concentrations of PFCAs compared to PFSAs. Advanced water treatment effectively removes long-chain PFAS but not short-chain. Ozonation may contribute to formation of short-chain PFAS. BAC is less effective on short-chain PFAS, requiring further GAC treatment.


Subject(s)
Fluorocarbons , Ozone , Water Pollutants, Chemical , Water Purification , Charcoal , Water Pollutants, Chemical/analysis , Water Purification/methods , Fluorocarbons/analysis
3.
Sci Total Environ ; 912: 169637, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38157893

ABSTRACT

This research investigated the removal of contaminants of emerging concern (CECs) and characterized the microbial community across an advanced water treatment (AWT) train consisting of Coagulation/Flocculation/Clarification/Granular Media Filtration (CFCGMF), Ozone-Biological Activated Carbon Filtration (O3/BAC), Granular Activated Carbon filtration, Ultraviolet Disinfection, and Cartridge Filtration (GAC/UV/CF). The AWT train successfully met the goals of CECs and bulk organics removal. The microbial community at each treatment step of the AWT train was characterized using 16S rRNA sequencing on the Illumina MiSeq platform generated from DNA extracted from liquid and solid (treatment media) samples taken along the treatment train. Differences in the microbial community structure were observed. The dominant operational taxonomic units (OTU) decreased along the treatment train, but the treatment steps did impact the microbial community composition downstream of each unit process. These results provide insights into microbial ecology in advanced water treatment systems, which are influenced and shaped by each treatment step, the microbial community interactions, and their potential metabolic contribution to CECs degradation.


Subject(s)
Drinking Water , Ozone , Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , RNA, Ribosomal, 16S , Water Pollutants, Chemical/chemistry , Water Purification/methods , Filtration/methods , Ozone/chemistry
4.
One Health ; 16: 100536, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37041760

ABSTRACT

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genome in wastewater has proven to be useful for tracking the trends of virus prevalence within the community. The surveillance also provides precise and early detection of any new and circulating variants, which aids in response to viral outbreaks. Site-specific monitoring of SARS-CoV-2 variants provides valuable information on the prevalence of new or emerging variants in the community. We sequenced the genomic RNA of viruses present in the wastewater samples and analyzed for the prevalence of SARS-CoV-2 variants as well as other respiratory viruses for a period of one year to account for seasonal variations. The samples were collected from the Reno-Sparks metropolitan area on a weekly basis between November 2021 to November 2022. Samples were analyzed to detect the levels of SARS-CoV-2 genomic copies and variants identification. This study confirmed that wastewater monitoring of SARS-CoV-2 variants can be used for community surveillance and early detection of circulating variants and supports wastewater-based epidemiology (WBE) as a complement to clinical respiratory virus testing as a healthcare response effort. Our study showed the persistence of the SARS-CoV-2 virus throughout the year compared to a seasonal presence of other respiratory viruses, implicating SARS-CoV-2's broad genetic diversity and strength to persist and infect susceptible hosts. Through secondary analysis, we further identified antimicrobial resistance (AMR) genes in the same wastewater samples and found WBE to be a feasible tool for community AMR detection and monitoring.

5.
Water Environ Res ; 94(5): e10726, 2022 May.
Article in English | MEDLINE | ID: mdl-35621226

ABSTRACT

Ozone-biological activated carbon (ozone-BAC)-based technologies are emerging as an appealing option for potable reuse systems; however, uncertainty remains regarding the reduction of waterborne pathogens. Common log reduction requirements have been modeled after California Department of Drinking Water's 12-10-10 log reduction value (LRV) for enteric virus, Cryptosporidium, and Giardia, respectively. The objective of this research was to investigate appropriate LRVs of pathogens that can be achieved in ozone-BAC-based treatment systems and to assess the applicability of employing drinking water pathogen guidelines for potable reuse applications. A pilot scale ozone-BAC-based treatment train was operated at two water reclamation facilities in Reno, Nevada, USA. Virus, Cryptosporidium, Giardia, and bacterial indicators were monitored across individual and combined treatment processes. Pathogen barriers investigated include conventional filtration, ozonation, and ultraviolet disinfection. Based on sampling and treatment validation strategies, the three pathogen barriers can provide minimum LRVs of 13-9-9.5 for virus, Giardia, and Cryptosporidium. Secondary biological treatment can provide additional pathogen LRVs with site-specific sampling. The present study addresses regulatory uncertainties associated with ozone-BAC pathogen reduction. PRACTITIONER POINTS: Ozone-biological activated carbon-based advanced treatment can meet pathogen LRV requirements with a minimum of three pathogen barriers. Successfully applied drinking water pathogen reduction guidelines for potable reuse applications verified by operational criteria. Low presence of pathogens requires surrogates and indicator analyses and variety of monitoring techniques to verify pathogen log reduction.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Drinking Water , Ozone , Water Purification , Charcoal , Giardia , Humans , Water Purification/methods
6.
Sci Total Environ ; 817: 152958, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35016937

ABSTRACT

In this study, wastewater-based surveillance was carried out to establish the correlation between SARS-CoV-2 viral RNA concentrations in wastewater and the incidence of corona virus disease 2019 (COVID-19) from clinical testing. The influent wastewater of three major water reclamation facilities (WRFs) in Northern Nevada, serving a population of 390,750, was monitored for SARS-CoV-2 viral RNA gene markers, N1 and N2, from June 2020 through September 2021. A total of 614 samples were collected and analyzed. The SARS-CoV-2 concentrations in wastewater were observed to peak twice during the study period. A moderate correlation trend between coronavirus disease 2019 (COVID-19) incidence data from clinical testing and SARS-CoV-2 viral RNA concentrations in wastewater was observed (Spearman r = 0.533). This correlation improved when using weekly average SARS-CoV-2 marker concentrations of wastewater and clinical case data (Spearman r = 0.790), presumably by mitigating the inherent variability of the environmental dataset and the effects of clinical testing artifacts (e.g., reporting lags). The research also demonstrated the value of wastewater-based surveillance as an early warning signal for early detection of trends in COVID-19 incidence. This was accomplished by identifying that the reported clinical cases had a stronger correlation to SARS-CoV-2 wastewater monitoring data when they were estimated to lag 7-days behind the wastewater data. The results aided local decision makers in developing strategies to manage COVID-19 in the region and provide a framework for how wastewater-based surveillance can be applied across localities to enhance the public health monitoring of the ongoing pandemic.


Subject(s)
COVID-19 , Wastewater , COVID-19/epidemiology , Genetic Markers , Humans , RNA, Viral , SARS-CoV-2/genetics
7.
Sci Total Environ ; 805: 150390, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34818797

ABSTRACT

The response to disease outbreaks, such as SARS-CoV-2, can be constrained by a limited ability to measure disease prevalence early at a localized level. Wastewater based epidemiology is a powerful tool identifying disease spread from pooled community sewer networks or at influent to wastewater treatment plants. However, this approach is often not applied at a granular level that permits detection of local hot spots. This study examines the spatial patterns of SARS-CoV-2 in sewage through a spatial sampling strategy across neighborhood-scale sewershed catchments. Sampling was conducted across the Reno-Sparks metropolitan area from November to mid-December of 2020. This research utilized local spatial autocorrelation tests to identify the evolution of statistically significant neighborhood hot spots in sewershed sub-catchments that were identified to lead waves of infection, with adjacent neighborhoods observed to lag with increasing viral RNA concentrations over subsequent dates. The correlations between the sub-catchments over the sampling period were also characterized using principal component analysis. Results identified distinct time series patterns, with sewersheds in the urban center, outlying suburban areas, and outlying urbanized districts generally following unique trends over the sampling period. Several demographic parameters were identified as having important gradients across these areas, namely population density, poverty levels, household income, and age. These results provide a more strategic approach to identify disease outbreaks at the neighborhood level and characterized how sampling site selection could be designed based on the spatial and demographic characteristics of neighborhoods.


Subject(s)
COVID-19 , Water Purification , Humans , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
8.
Water Environ Res ; 93(11): 2819-2827, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34528319

ABSTRACT

There have been multiple reports of COVID-19 virus, SARS-CoV-2 RNA presence in influent wastewater of water reclamation facilities (WRFs) across the world. In this study, the removal of SARS-CoV-2 RNA was investigated in a WRF by collecting samples from various stages relayed to hydraulic retention time (HRT) and analyzed for viral RNA (N1 and N2) gene markers and wastewater characteristics. SARS-CoV-2 RNA was detected in 28 out of 28 influent wastewater and primary effluent samples. Secondary effluent showed 4 out of 9 positive samples, and all tertiary and final effluent samples were below the detection limit for the viral markers. The reduction was significant (p value < 0.005, one-way analysis of variance [ANOVA] test) in secondary treatment, ranging from 1.4 to 2.0 log10 removal. Adjusted N1 viral marker had a positive correlation with total suspended solids, total Kjeldahl nitrogen, and ammonia concentrations (Spearman's ρ = 0.61, 0.67, and 0.53, respectively, p value < 0.05), while demonstrating a strongly negative correlation with HRT (Spearman's ρ = -0.58, p value < 0.01). PRACTITIONER POINTS: Viral RNA was present in all samples taken from influent and primary effluent of a WRF. SARS-CoV-2 gene marker was detected in secondary effluent in 4 out of 9 samples. Tertiary and final effluent samples tested nondetect for SARS-CoV-2 gene markers. Up to 0.5 and 2.0 log10 virus removal values were achieved by primary and secondary treatment, respectively.


Subject(s)
COVID-19 , Water Purification , Biomarkers , Humans , RNA, Viral , SARS-CoV-2 , Wastewater , Water
9.
Water Environ Res ; 90(8): 748-760, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30031408

ABSTRACT

A triple bottom line (TBL) approach was used to examine the trade-offs between potential reclaimed water management strategies in a closed basin. The goals of the water management strategy included minimizing water source shortages, ensuring safe and resilient future water supplies, and protecting inland ecosystems through adequate surface flows. The TBL approach consisted of quantitative and qualitative impact assessments of social, environmental, and economic criteria. This research examined how potable reuse of reclaimed water addresses water needs in a closed basin such as maintaining water quality, managing reclaimed water disposal, meeting growing water demand, balancing groundwater extraction rates with inflows, preserving inland ecosystems, and ensuring a locally controlled safe drinking water source. The TBL assessment first evaluated water stress based on water demand and supply under status quo conditions. The results were compared with the potable reuse scenario, which provides more environmental and social benefits than the status quo scenario.


Subject(s)
Conservation of Natural Resources/methods , Recycling/economics , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/methods , Water Purification , Nevada , Wastewater , Water Quality , Water Supply
10.
Chemosphere ; 144: 1170-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26461442

ABSTRACT

Two waste streams from an oil refinery wastewater treatment system, float from a dissolved air flotation unit (DAF sludge) and waste activated sludge (WAS), were investigated to determine toxicity and biogas production potential for anaerobic digestion through batch testing methods. Ozonation as a pretreatment was investigated to observe the impacts of waste solubilization on both toxicity and biodegradability. Anaerobic toxicity assays resulted in no detectible inhibition from WAS, neither with nor without ozonation. Untreated DAF sludge exhibited inhibition that amplified with the increases in DAF sludge inclusion. Ozone treatment effectively reduces this inhibition. The biodegradability of WAS, measured by biochemical methane potential tests, doubled with low dose ozonation. DAF sludge biodegradability was negligible prior to treatment and was successfully enhanced through ozonation.


Subject(s)
Biofuels/analysis , Methane/analysis , Oil and Gas Industry , Ozone/chemistry , Sewage/chemistry , Wastewater/toxicity , Water Purification/methods , Anaerobiosis , Biodegradation, Environmental , Sewage/microbiology , Wastewater/chemistry , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...