Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Allergy ; 79(7): 1844-1857, 2024 07.
Article in English | MEDLINE | ID: mdl-38798015

ABSTRACT

BACKGROUND: The rise in asthma has been linked to different environmental and lifestyle factors including dietary habits. Whether dietary salt contributes to asthma incidence, remains controversial. We aimed to investigate the impact of higher salt intake on asthma incidence in humans and to evaluate underlying mechanisms using mouse models. METHODS: Epidemiological research was conducted using the UK Biobank Resource. Data were obtained from 42,976 participants with a history of allergies. 24-h sodium excretion was estimated from spot urine, and its association with asthma incidence was assessed by Cox regression, adjusting for relevant covariates. For mechanistic studies, a mouse model of mite-induced allergic airway inflammation (AAI) fed with high-salt diet (HSD) or normal-salt chow was used to characterize disease development. The microbiome of lung and feces (as proxy for gut) was analyzed via 16S rRNA gene based metabarcoding approach. RESULTS: In humans, urinary sodium excretion was directly associated with asthma incidence among females but not among males. HSD-fed female mice displayed an aggravated AAI characterized by increased levels of total IgE, a TH2-TH17-biased inflammatory cell infiltration accompanied by upregulation of osmosensitive stress genes. HSD induced distinct changes in serum short chain fatty acids and in both gut and lung microbiome, with a lower Bacteroidetes to Firmicutes ratio and decreased Lactobacillus relative abundance in the gut, and enriched members of Gammaproteobacteria in the lung. CONCLUSIONS: High dietary salt consumption correlates with asthma incidence in female adults with a history of allergies. Female mice revealed HSD-induced T-cell lung profiles accompanied by alterations of gut and lung microbiome.


Subject(s)
Asthma , Sodium Chloride, Dietary , Animals , Asthma/etiology , Asthma/immunology , Mice , Humans , Female , Male , Sodium Chloride, Dietary/adverse effects , Disease Models, Animal , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Gastrointestinal Microbiome , Adult , Middle Aged , Microbiota , Incidence
2.
Front Cell Dev Biol ; 11: 1107380, 2023.
Article in English | MEDLINE | ID: mdl-36875774

ABSTRACT

Background: Synaptic plasticity requires constant adaptation of functional and structural features at individual synaptic connections. Rapid re-modulation of the synaptic actin cytoskeleton provides the scaffold orchestrating both morphological and functional modifications. A major regulator of actin polymerization not only in neurons but also in various other cell types is the actin-binding protein profilin. While profilin is known to mediate the ADP to ATP exchange at actin monomers through its direct interaction with G-actin, it additionally is able to influence actin dynamics by binding to membrane-bound phospholipids as phosphatidylinositol (4,5)-bisphosphate (PIP2) as well as several other proteins containing poly-L-proline motifs including actin modulators like Ena/VASP, WAVE/WASP or formins. Notably, these interactions are proposed to be mediated by a fine-tuned regulation of post-translational phosphorylation of profilin. However, while phosphorylation sites of the ubiquitously expressed isoform profilin1 have been described and analyzed previously, there is still only little known about the phosphorylation of the profilin2a isoform predominantly expressed in neurons. Methods: Here, utilizing a knock-down/knock-in approach, we replaced endogenously expressed profilin2a by (de)phospho-mutants of S137 known to alter actin-, PIP2 and PLP-binding properties of profilin2a and analyzed their effect on general actin dynamics as well as activity-dependent structural plasticity. Results and Discussion: Our findings suggest that a precisely timed regulation of profilin2a phosphorylation at S137 is needed to mediate actin dynamics and structural plasticity bidirectionally during long-term potentiation and long-term depression, respectively.

3.
Int Rev Cell Mol Biol ; 369: 89-106, 2022.
Article in English | MEDLINE | ID: mdl-35777866

ABSTRACT

Anticalin proteins are a novel class of clinical-stage biopharmaceuticals with high potential in various disease areas. Anticalin proteins, derived from extracellular human lipocalins are single-chain proteins, with a highly stable structure that can be engineered to bind with high specificity and potency to targets of therapeutic relevance. The small size and stable structure support their development as inhalable biologics in the field of respiratory diseases as already demonstrated for PRS-060/AZD1402, an Anticalin protein currently undergoing clinical development for the treatment of asthma. Anticalin proteins provide formatting flexibility which allows fusion with the same or other Anticalin proteins, or with other biologics to generate multivalent, multiparatopic or multispecific fusion proteins. The fusion of Anticalin proteins to antibodies allows the generation of potent therapeutic proteins with new modes of action, such as antibody-Anticalin bispecific proteins with tumor-localized activity. Cinrebafusp alfa and PRS-344/S095012 antibody-Anticalin bispecific proteins were designed to reduce potential systemic toxicity by localizing the activity to the tumor, and are currently in clinical development in immuno-oncology. Furthermore, the ease in generating bi- and multispecifics as well as the small and stable structure prompted the investigation of Anticalin proteins for the CAR T space, opening additional potential treatment options based on Anticalin protein therapies.


Subject(s)
Biological Products , Neoplasms , Biological Products/therapeutic use , Drug Development , Humans , Lipocalins/therapeutic use , Neoplasms/drug therapy , Proteins
4.
Front Immunol ; 12: 763243, 2021.
Article in English | MEDLINE | ID: mdl-35069535

ABSTRACT

TGF-ß1 is known to have a pro-inflammatory impact by inducing Th9 and Th17 cells, while it also induces anti-inflammatory Treg cells (Tregs). In the context of allergic airway inflammation (AAI) its dual role can be of critical importance in influencing the outcome of the disease. Here we demonstrate that TGF-ß is a major player in AAI by driving effector T cells, while Tregs differentiate independently. Induction of experimental AAI and airway hyperreactivity in a mouse model with inducible genetic ablation of the gene encoding for TGFß-receptor 2 (Tgfbr2) on CD4+T cells significantly reduced the disease phenotype. Further, it blocked the induction of pro-inflammatory T cell frequencies (Th2, Th9, Th17), but increased Treg cells. To translate these findings into a human clinically relevant context, Th2, Th9 and Treg cells were quantified both locally in induced sputum and systemically in blood of allergic rhinitis and asthma patients with or without allergen-specific immunotherapy (AIT). Natural allergen exposure induced local and systemic Th2, Th9, and reduced Tregs cells, while therapeutic allergen exposure by AIT suppressed Th2 and Th9 cell frequencies along with TGF-ß and IL-9 secretion. Altogether, these findings support that neutralization of TGF-ß represents a viable therapeutic option in allergy and asthma, not posing the risk of immune dysregulation by impacting Tregs cells.


Subject(s)
Allergens/immunology , Asthma/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta1/immunology , Allergens/genetics , Animals , Asthma/genetics , Asthma/pathology , Inflammation/genetics , Inflammation/immunology , Mice , Mice, Transgenic , Transforming Growth Factor beta1/genetics
5.
Cell Rep ; 29(3): 671-684.e6, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31618635

ABSTRACT

Precisely controlling the excitatory and inhibitory balance is crucial for the stability and information-processing ability of neuronal networks. However, the molecular mechanisms maintaining this balance during ongoing sensory experiences are largely unclear. We show that Nogo-A signaling reciprocally regulates excitatory and inhibitory transmission. Loss of function for Nogo-A signaling through S1PR2 rapidly increases GABAAR diffusion, thereby decreasing their number at synaptic sites and the amplitude of GABAergic mIPSCs at CA3 hippocampal neurons. This increase in GABAAR diffusion rate is correlated with an increase in Ca2+ influx and requires the calcineurin-mediated dephosphorylation of the γ2 subunit at serine 327. These results suggest that Nogo-A signaling rapidly strengthens inhibitory GABAergic transmission by restricting the diffusion dynamics of GABAARs. Together with the observation that Nogo-A signaling regulates excitatory transmission in an opposite manner, these results suggest a crucial role for Nogo-A signaling in modulating the excitation and inhibition balance to restrict synaptic plasticity.


Subject(s)
Nogo Proteins/metabolism , Receptors, GABA-A/metabolism , Animals , Antibodies, Blocking/immunology , Calcineurin/metabolism , Calcium/metabolism , Cells, Cultured , Female , Hippocampus/cytology , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Nogo Proteins/immunology , Patch-Clamp Techniques , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Rats, Wistar , Receptors, GABA-A/genetics , Signal Transduction , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Sphingosine-1-Phosphate Receptors/metabolism , Synapses/metabolism , Synaptic Transmission
6.
Glia ; 67(1): 193-211, 2019 01.
Article in English | MEDLINE | ID: mdl-30597659

ABSTRACT

Neurotrophins mediate neuronal growth, differentiation, and survival via tropomyosin receptor kinase (Trk) or p75 neurotrophin receptor (p75NTR ) signaling. The p75NTR is not exclusively expressed by neurons but also by certain immune cells, implying a role for neurotrophin signaling in the immune system. In this study, we investigated the effect of p75NTR on innate immune cell behavior and on neuronal morphology upon chronic Toxoplasma gondii (T. gondii) infection-induced neuroinflammation. Characterization of the immune cells in the periphery and central nervous system (CNS) revealed that innate immune cell subsets in the brain upregulated p75NTR upon infection in wild-type mice. Although cell recruitment and phagocytic capacity of p75NTRexonIV knockout (p75-/- ) mice were not impaired, the activation status of resident microglia and recruited myeloid cell subsets was altered. Importantly, recruited mononuclear cells in brains of infected p75-/- mice upregulated the production of the cytokines interleukin (IL)-10, IL-6 as well as IL-1α. Protein levels of proBDNF, known to negatively influence neuronal morphology by binding p75NTR , were highly increased upon chronic infection in the brain of wild-type and p75-/- mice. Moreover, upon infection the activated immune cells contributed to the proBDNF release. Notably, the neuroinflammation-induced changes in spine density were rescued in the p75-/- mice. In conclusion, these findings indicate that neurotrophin signaling via the p75NTR affects innate immune cell behavior, thus, influencing the structural plasticity of neurons under inflammatory conditions.


Subject(s)
Leukocytes, Mononuclear/physiology , Neurons/physiology , Receptor, Nerve Growth Factor/physiology , Toxoplasma , Toxoplasmosis/immunology , Animals , Female , Immunity, Innate/physiology , Inflammation/immunology , Inflammation/pathology , Leukocytes, Mononuclear/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Toxoplasmosis/pathology
7.
J Allergy Clin Immunol ; 141(4): 1320-1333.e11, 2018 04.
Article in English | MEDLINE | ID: mdl-28935206

ABSTRACT

BACKGROUND: A standardized human model to study early pathogenic events in patients with psoriasis is missing. Activation of Toll-like receptor 7/8 by means of topical application of imiquimod is the most commonly used mouse model of psoriasis. OBJECTIVE: We sought to investigate the potential of a human imiquimod patch test model to resemble human psoriasis. METHODS: Imiquimod (Aldara 5% cream; 3M Pharmaceuticals, St Paul, Minn) was applied twice a week to the backs of volunteers (n = 18), and development of skin lesions was monitored over a period of 4 weeks. Consecutive biopsy specimens were taken for whole-genome expression analysis, histology, and T-cell isolation. Plasmacytoid dendritic cells (pDCs) were isolated from whole blood, stimulated with Toll-like receptor 7 agonist, and analyzed by means of extracellular flux analysis and real-time PCR. RESULTS: We demonstrate that imiquimod induces a monomorphic and self-limited inflammatory response in healthy subjects, as well as patients with psoriasis or eczema. The clinical and histologic phenotype, as well as the transcriptome, of imiquimod-induced inflammation in human skin resembles acute contact dermatitis rather than psoriasis. Nevertheless, the imiquimod model mimics the hallmarks of psoriasis. In contrast to classical contact dermatitis, in which myeloid dendritic cells sense haptens, pDCs are primary sensors of imiquimod. They respond with production of proinflammatory and TH17-skewing cytokines, resulting in a TH17 immune response with IL-23 as a key driver. In a proof-of-concept setting systemic treatment with ustekinumab diminished imiquimod-induced inflammation. CONCLUSION: In human subjects imiquimod induces contact dermatitis with the distinctive feature that pDCs are the primary sensors, leading to an IL-23/TH17 deviation. Despite these shortcomings, the human imiquimod model might be useful to investigate early pathogenic events and prove molecular concepts in patients with psoriasis.


Subject(s)
Dendritic Cells/metabolism , Dermatitis, Contact/metabolism , Imiquimod/adverse effects , Models, Biological , Psoriasis/metabolism , Th17 Cells/metabolism , Toll-Like Receptor 7/agonists , Administration, Cutaneous , Adult , Aged , Biomarkers/metabolism , Case-Control Studies , Dermatitis, Contact/pathology , Female , Flow Cytometry , Humans , Imiquimod/administration & dosage , Immunohistochemistry , Male , Middle Aged , Psoriasis/pathology , Real-Time Polymerase Chain Reaction , Toll-Like Receptor 8/agonists
8.
Nat Commun ; 7: 13466, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27892456

ABSTRACT

Neutralization of the common p40-subunit of IL-12/23 in psoriasis patients has led to a breakthrough in the management of moderate to severe disease. Aside from neutralizing IL-23, which is thought to be responsible for the curative effect, anti-p40 therapy also interferes with IL-12 signalling and type 1 immunity. Here we dissect the individual contribution of these two cytokines to the formation of psoriatic lesions and understand the effect of therapeutic co-targeting of IL-12 and IL-23 in psoriasis. Using a preclinical model for psoriatic plaque formation we show that IL-12, in contrast to IL-23, has a regulatory function by restraining the invasion of an IL-17-committed γδT (γδT17) cell subset. We discover that IL-12 receptor signalling in keratinocytes initiates a protective transcriptional programme that limits skin inflammation, suggesting that collateral targeting of IL-12 by anti-p40 monoclonal antibodies is counterproductive in the therapy of psoriasis.


Subject(s)
Inflammation/prevention & control , Interleukin-12/metabolism , Psoriasis/prevention & control , Skin/pathology , Aminoquinolines/pharmacology , Aminoquinolines/therapeutic use , Animals , Female , Humans , Imiquimod , Inflammation/complications , Inflammation/drug therapy , Inflammation/pathology , Interleukin-23/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Mice, Inbred C57BL , Psoriasis/complications , Psoriasis/drug therapy , Psoriasis/pathology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Skin/drug effects
9.
Diabetes ; 65(11): 3440-3452, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27561727

ABSTRACT

In obese individuals, visceral adipose tissue (VAT) is the seat of chronic low-grade inflammation (metaflammation), but the mechanistic link between increased adiposity and metaflammation largely remains unclear. In obese individuals, deregulation of a specific adipokine, chemerin, contributes to innate initiation of metaflammation by recruiting circulating plasmacytoid dendritic cells (pDCs) into VAT through chemokine-like receptor 1 (CMKLR1). Adipose tissue-derived high-mobility group B1 (HMGB1) protein activates Toll-like receptor 9 (TLR9) in the adipose-recruited pDCs by transporting extracellular DNA through receptor for advanced glycation end products (RAGE) and induces production of type I interferons (IFNs). Type I IFNs in turn help in proinflammatory polarization of adipose-resident macrophages. IFN signature gene expression in VAT correlates with both adipose tissue and systemic insulin resistance (IR) in obese individuals, which is represented by ADIPO-IR and HOMA2-IR, respectively, and defines two subgroups with different susceptibility to IR. Thus, this study reveals a pathway that drives adipose tissue inflammation and consequent IR in obesity.


Subject(s)
Dendritic Cells/metabolism , Toll-Like Receptor 9/metabolism , Adipose Tissue/metabolism , Adult , Aged , Aged, 80 and over , Female , Glycation End Products, Advanced/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Humans , Inflammation/metabolism , Insulin Resistance/genetics , Insulin Resistance/physiology , Interferon Type I/genetics , Interferon Type I/metabolism , Intra-Abdominal Fat/metabolism , Male , Middle Aged , Receptors, Chemokine , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Toll-Like Receptor 9/genetics
10.
Cancer Immunol Res ; 3(8): 849-54, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26122284

ABSTRACT

The costimulatory molecules B7-H3 and B7-H4 are overexpressed in a variety of human tumors and have been hypothesized as possible biomarkers and immunotherapeutic targets. Despite this potential, the predominating uncertainty about their functional implication in tumor-host interaction hampers their evaluation as a target for cancer therapy. By means of a highly physiologic, spontaneous tumor model in mice, we establish a causal link between B7-H3 and host tumor control and found B7-H4 to be redundant.


Subject(s)
B7 Antigens/genetics , Gene Deletion , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , V-Set Domain-Containing T-Cell Activation Inhibitor 1/genetics , Animals , B7 Antigens/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Humans , Immunophenotyping , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Mice , Mice, Knockout , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Burden , V-Set Domain-Containing T-Cell Activation Inhibitor 1/metabolism
12.
Nat Rev Immunol ; 13(8): 566-77, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23827956

ABSTRACT

Dendritic cells (DCs) initiate and shape both the innate and adaptive immune responses. Accordingly, recent evidence from clinical studies and experimental models implicates DCs in the pathogenesis of most autoimmune diseases. However, fundamental questions remain unanswered concerning the actual roles of DCs in autoimmunity, both in general and, in particular, in specific diseases. In this Review, we discuss the proposed roles of DCs in immunological tolerance, the effect of the gain or loss of DCs on autoimmunity and DC-intrinsic molecular regulators that help to prevent the development of autoimmunity. We also review the emerging roles of DCs in several autoimmune diseases, including autoimmune myocarditis, multiple sclerosis, psoriasis, type 1 diabetes and systemic lupus erythematosus.


Subject(s)
Adaptive Immunity , Autoimmunity , Dendritic Cells/immunology , Immunity, Innate , Self Tolerance , Animals , Diabetes Mellitus, Type 1/immunology , Humans , Lupus Erythematosus, Systemic/immunology , Mice , Multiple Sclerosis/immunology , Myocarditis/immunology , Psoriasis/immunology , Rats
13.
Proc Natl Acad Sci U S A ; 110(26): 10723-8, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23754427

ABSTRACT

Psoriasis is an autoinflammatory skin disease of unknown etiology. Topical application of Aldara cream containing the Toll-like receptor (TLR)7 agonist Imiquimod (IMQ) onto patients induces flares of psoriasis. Likewise, in mice IMQ triggers pathological changes closely resembling psoriatic plaque formation. Key cytokines like IL-23 and type-I IFN (IFN-I), both being produced mainly by dendritic cells (DCs), have been implicated in psoriasis. Although plasmacytoid DCs (pDCs) are the main source of IFNα and thought to initiate disease, conventional DCs (cDCs) appear to maintain the psoriatic lesions. Any role of cDCs during lesion formation remains elusive. Here, we report that selective activation of TLR7 signaling specifically in CD11c(+) DCs was sufficient to induce psoriasiform skin disease in mice. Intriguingly, both pDCs and the IFN-I pathway were dispensable for the development of local skin inflammation. Selective TLR7 triggering of Langerin(+) DCs resulted in attenuated disease, whereas their depletion did not alter the severity of skin lesions. Moreover, after IMQ-painting, IL-23 was exclusively produced by Langerin(neg) DCs in vivo. In conclusion, TLR7-activated Langerin(neg) cDCs trigger psoriatic plaque formation via IL-23-mediated activation of innate IL-17/IL-22-producing lymphocytes, independently of pDCs or IFN-I. These results suggest therapeutic targeting of IL-23 production by cDCs to refine current treatment strategies for psoriasis.


Subject(s)
Antigens, Surface/genetics , Interleukin-23/biosynthesis , Langerhans Cells/immunology , Lectins, C-Type/deficiency , Lectins, C-Type/genetics , Mannose-Binding Lectins/deficiency , Mannose-Binding Lectins/genetics , Psoriasis/immunology , Aminoquinolines/administration & dosage , Animals , Antigens, Surface/biosynthesis , Disease Models, Animal , Imiquimod , Langerhans Cells/drug effects , Lectins, C-Type/biosynthesis , Mannose-Binding Lectins/biosynthesis , Membrane Glycoproteins/agonists , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Psoriasis/etiology , Psoriasis/pathology , Toll-Like Receptor 7/agonists
14.
J Clin Invest ; 122(6): 2252-6, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22546855

ABSTRACT

Psoriasis is a common, relapsing inflammatory skin disease characterized by erythematous scaly plaques. Histological manifestations of psoriasis include keratinocyte dysregulation and hyperproliferation, elongated rete ridges, and inflammatory infiltrates consisting of T cells, macrophages, dendritic cells, and neutrophils. Despite the availability of new effective drugs to treat psoriasis, the underlying mechanisms of pathogenesis are still poorly understood. Recent studies have shown that Aldara cream, used to treat benign skin abnormalities, triggers psoriasis-like disease in humans and mice and have implicated Th17 cells in disease initiation. Using this as a model, we found a predominant role for the Th17 signature cytokines IL-17A, IL-17F, and IL-22 in psoriasiform plaque formation in mice. Using gene-targeted mice, we observed that loss of Il17a, Il17f, or Il22 strongly reduced disease the severity of psoriasis. However, we found that Th17 cells were not the primary source of these pathogenic cytokines. Rather, IL-17A, IL-17F, and IL-22 were produced by a skin-invading population of γδ T cells and RORγt(+) innate lymphocytes. Furthermore, our findings establish that RORγt(+) innate lymphocytes and γδ T cells are necessary and sufficient for psoriatic plaque formation in an experimental disease model that closely resembles human psoriatic plaque formation.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Psoriasis/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Skin/immunology , T-Lymphocytes/immunology , Adjuvants, Immunologic/pharmacology , Administration, Topical , Aminoquinolines/pharmacology , Animals , Dendritic Cells/immunology , Dendritic Cells/pathology , Disease Models, Animal , Humans , Imiquimod , Interleukin-17/genetics , Interleukin-17/immunology , Interleukins/genetics , Interleukins/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Knockout , Neutrophils/immunology , Neutrophils/pathology , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Psoriasis/drug therapy , Psoriasis/genetics , Psoriasis/pathology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Skin/pathology , T-Lymphocytes/pathology , Interleukin-22
15.
Eur J Immunol ; 39(7): 1864-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19544494

ABSTRACT

IL-23 but not IL-12 is essential for the development of autoimmune tissue inflammation in mice. Conversely, IL-12 and IL-23 impact on the polarization of Th1 and Th17 cells, respectively. While both polarized T helper populations can mediate autoimmune inflammation, their redundancy in the pathogenesis of EAE indicates that IL-23 exerts its crucial influence on the disease independent of its T helper polarizing capacity. To study the impact of IL-23 and IL-12 on the behavior of encephalitogenic T cells in vivo, we generated BM-chimeric mice in which we can trace individual populations of IL-23 or IL-12 responsive T helper cells during EAE. We observed that T cells, which lack IL-12Rbeta1 (no IL-12 and IL-23 signaling), fail to invade the CNS and do not acquire a Th17 phenotype. In contrast, loss of IL-12 signaling prevents Th1 polarization but does not prevent T-cell entry into the CNS. The loss of IL-12R engagement does not appear to alter T-cell expansion but leads to their accumulation in secondary lymphoid organs. We found that IL-23 licenses T cells to invade the target tissue and to exert their effector function, whereas IL-12 is critical for Th1 differentiation, but does not influence the pathogenic capacity of auto-reactive T helper cells in vivo.


Subject(s)
Central Nervous System/metabolism , Interleukin-17/metabolism , Interleukin-23/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Marrow/radiation effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Central Nervous System/immunology , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Flow Cytometry , Forkhead Transcription Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Interferon-beta/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Receptors, Interleukin-12/genetics , Receptors, Interleukin-12/metabolism , Signal Transduction/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology
16.
J Clin Invest ; 119(1): 61-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19075395

ABSTRACT

The clear association of Th17 cells with autoimmune pathogenicity implicates Th17 cytokines as critical mediators of chronic autoimmune diseases such as EAE. To study the impact of IL-17A on CNS inflammation, we generated transgenic mice in which high levels of expression of IL-17A could be initiated after Cre-mediated recombination. Although ubiquitous overexpression of IL-17A led to skin inflammation and granulocytosis, T cell-specific IL-17A overexpression did not have a perceptible impact on the development and health of the mice. In the context of EAE, neither the T cell-driven overexpression of IL-17A nor its complete loss had a major impact on the development of clinical disease. Since IL-17F may be able to compensate for the loss of IL-17A, we also generated IL-17F-deficient mice. This strain was fully susceptible to EAE and displayed unaltered emergence and expansion of autoreactive T cells during disease. To eliminate potential compensatory effects of either cytokine, we treated IL-17F-deficient mice with antagonistic monoclonal antibodies specific for IL-17A and found again only a minimal beneficial impact on disease development. We conclude therefore that both IL-17A and IL-17F, while prominently expressed by an encephalitogenic T cell population, may only marginally contribute to the development of autoimmune CNS disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Interleukin-17/immunology , Animals , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Glycoproteins/immunology , Granulocytes/metabolism , Interleukin-17/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments/immunology , Th1 Cells/cytology , Th1 Cells/immunology
17.
Immunotherapy ; 1(2): 199-203, 2009 Mar.
Article in English | MEDLINE | ID: mdl-20635941

ABSTRACT

Th17 cells and their proinflammatory signature cytokine, IL-17, have recently replaced Th1 cells to be the essential Th effector population in autoimmune disease. This was based on a similar line of evidence that previously destined Th1 cells to be the sole encephalitogenic Th-cell effector type. However, as for the Th1-effector type before, an increasing amount of evidence is accumulating that questions the pivotal role of Th17 cells in autoimmunity. Recently, four high-impact articles were published that clearly show that Th1 and Th17 cells carry encephalitogenic properties, and dominance of either in an autoimmune setting can confer disease. In two mouse models for autoimmune neuroinflammation, it was suggested that Th1 and Th17 cells act in parallel, both exhibiting a different set of effector mechanisms.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , T-Lymphocytes, Helper-Inducer/immunology , Th1 Cells/immunology , Adaptive Immunity , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Inflammation , Interleukin-17/metabolism , Mice , Neuroimmunomodulation , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/pathology
18.
J Immunol ; 179(12): 8098-104, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18056351

ABSTRACT

Lately, IL-17-secreting Th cells have received an overwhelming amount of attention and are now widely held to be the major pathogenic population in autoimmune diseases. In particular, IL-22-secreting Th17 cells were shown to specifically mark the highly pathogenic population of self-reactive T cells in experimental autoimmune encephalomyelitis (EAE). As IL-17A itself was found to only play a minor role during the development of EAE, IL-22 is now postulated to contribute to the pathogenic function of Th17 cells. The goal of this study was to determine the role and function of IL-22 during the development of CNS autoimmunity in vivo. We found that CNS-invading encephalitogenic Th17 cells coexpress IL-22 and that IL-22 is specifically induced by IL-23 in autoimmune-pathogenic CD4+ T cells in a time- and dose-dependent manner. We next generated IL-22-/- mice, which--in contrast to the prediction that expression of inflammatory cytokines by CNS-invading T cells inevitably confers pathogenic function--turned out to be fully susceptible to EAE. Taken together, we show that self-reactive Th cells coexpress IL-17 and IL-22, but that the latter also does not appear to be directly involved in autoimmune pathogenesis of the CNS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-17/metabolism , Interleukin-23/metabolism , Interleukins/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression , Gene Targeting , Interleukin-23/genetics , Interleukins/genetics , Mice , Mice, Mutant Strains , Interleukin-22
SELECTION OF CITATIONS
SEARCH DETAIL
...