Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Wound Repair Regen ; 21(3): 482-9, 2013.
Article in English | MEDLINE | ID: mdl-23627267

ABSTRACT

A gelatinase-based device for fast detection of wound infection was developed. Collective gelatinolytic activity in infected wounds was 23 times higher (p ≤ 0.001) than in noninfected wounds and blisters according to the clinical and microbiological description of the wounds. Enzyme activities of critical wounds showed 12-fold elevated enzyme activities compared with noninfected wounds and blisters. Upon incubation of gelatin-based devices with infected wound fluids, an incubation time of 30 minutes led to a clearly visible dye release. A 32-fold color increase was measured after 60 minutes. Both matrix metalloproteinases and elastases contributed to collective gelatinolytic enzyme activity as shown by zymography and inhibition experiments. The metalloproteinase inhibitor 1,10-phenanthroline (targeting matrix metalloproteinases) and the serine protease inhibitor phenylmethlysulfonyl fluoride (targeting human neutrophil elastase) inhibited gelatinolytic activity in infected wound fluid samples by 11-37% and 60-95%, respectively. Staphylococcus aureus and Pseudomonas aeruginosa, both known for gelatinase production, were isolated in infected wound samples.


Subject(s)
Bacteria/enzymology , Microbiological Techniques/instrumentation , Peptide Hydrolases/biosynthesis , Wound Infection/diagnosis , Equipment Design , Humans , Reproducibility of Results , Wound Infection/enzymology , Wound Infection/microbiology
2.
Phytochem Anal ; 14(3): 137-44, 2003.
Article in English | MEDLINE | ID: mdl-12793459

ABSTRACT

For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin primeveroside to the unwanted mutagenic aglycone lucidin. Madder root was treated with strong acid, strong base or enzymes to convert ruberythric acid into alizarin and the anthraquinone compositions of the suspensions were analysed by HPLC. A cheap and easy method to hydrolyse ruberythric acid in madder root to alizarin without the formation of lucidin turned out to be the stirring of dried madder roots in water at room temperature for 90 min: this gave a suspension containing pseudopurpurin, munjistin, alizarin and nordamnacanthal. Native enzymes are responsible for the hydrolysis, after which lucidin is converted to nordamnacanthal by an endogenous oxidase.


Subject(s)
Anthraquinones/metabolism , Glycosides/metabolism , Plant Roots/chemistry , Rubiaceae/chemistry , Anthraquinones/chemistry , Glycosides/chemistry , Hydrogen-Ion Concentration , Hydrolases/metabolism , Hydrolysis , Molecular Structure , Rubiaceae/enzymology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...