Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 41(2): 504-10, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18424181

ABSTRACT

The aim of the present was study to evaluate cortical and subcortical neural responses on vibrotactile stimulation of the food and to assess somatosensory evoked BOLD responses in dependence of vibration amplitude and stimulus waveform. Sixteen healthy male subjects received vibrotactile stimulation at the sole of the right foot. The vibration stimulus was delivered through a moving magnet actuator system (MMAS). In an event-related design, a series of vibration stimuli with a duration of 1 s and a variable interstimulus interval was presented. Four stimulation conditions were realized using a 2 (amplitudes 0.4 mm or 1.6 mm) x 2 (waveform sinusoidal or amplitude modulated) factorial design. Stimulating with 0.4 mm amplitude compared to 1.6 mm stimulus amplitude more strongly activated the pre- and postcentral gyrus bilaterally and the right inferior, medial and middle frontal gyrus. In the reverse comparison significant differences were observed within the left inferior parietal lobule, the left superior temporal gyrus, and the left temporal transverse gyrus. In the comparison of sinusoidal versus modulated waveform and vice versa no significant activation differences were obtained. The inter-subject variability was high but when all four stimulation conditions were jointly analyzed, a significant activation of S1 was obtained for every single subject. This study demonstrated that the BOLD response is modulated by the amplitude but not by the waveform of vibrotactile stimulation. Despite high inter-individual variability, the stimulation yielded reliable results for S1 on the single-subject level. Therefore, our results suggest that vibrotactile testing could evolve into a clinical tool in functional neuroimaging.


Subject(s)
Brain Mapping , Brain/pathology , Foot/innervation , Magnetic Resonance Imaging , Vibration , Adolescent , Adult , Humans , Image Interpretation, Computer-Assisted , Male , Oxygen/blood , Touch/physiology
2.
Neuroimage ; 39(1): 492-9, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17936643

ABSTRACT

To assess the effect of caffeine on the functional MRI signal during a 2-back verbal working memory task, we examined blood oxygenation level-dependent regional brain activity in 15 healthy right-handed males. The subjects, all moderate caffeine consumers, underwent two scanning sessions on a 1.5-T MR-Scanner separated by a 24- to 48-h interval. Each participant received either placebo or 100 mg caffeine 20 min prior to the performance of the working memory task in blinded crossover fashion. The study was implemented as a blocked-design. Analysis was performed using SPM2. In both conditions, the characteristic working memory network of frontoparietal cortical activation including the precuneus and the anterior cingulate could be shown. In comparison to placebo, caffeine caused an increased response in the bilateral medial frontopolar cortex (BA 10), extending to the right anterior cingulate cortex (BA 32). These results suggest that caffeine modulates neuronal activity as evidenced by fMRI signal changes in a network of brain areas associated with executive and attentional functions during working memory processes.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/physiology , Evoked Potentials/physiology , Magnetic Resonance Imaging/methods , Memory, Short-Term/physiology , Verbal Behavior/physiology , Adult , Caffeine/pharmacology , Cerebral Cortex/drug effects , Evoked Potentials/drug effects , Female , Humans , Male , Memory, Short-Term/drug effects , Middle Aged , Verbal Behavior/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...