Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Anim Nutr ; 6(1): 24-30, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32211525

ABSTRACT

The utility of a next generation biosynthetic bacterial 6-phytase (PhyG) in restoring bone ash, bone phosphorus (P) content and performance in piglets depleted in P was evaluated. A total of 9 treatments were tested as follows. Treatment 1, a negative control (NC) diet; treatments 2, 3, 4, NC supplemented with 250, 500 or 1,000 FTU/kg of PhyG; treatments 5, 6, NC supplemented with 500 or 1,000 FTU/kg of a commercial Buttiauxella sp phytase (PhyB); treatments 7, 8, 9, NC supplemented with monocalcium phosphate (MCP) to provide 0.7, 1.4 and 1.8 g/kg digestible P, equating to a digestible P content of 1.8, 2.5 and 2.9 g/kg. The latter constituting the positive control (PC) diet with adequate P and calcium (Ca). The NC was formulated without inorganic P (1.1 g digestible P/kg) and reduced in Ca (5.0 g/kg). Additional limestone was added to treatments 7 to 9 to maintain Ca-to-P ratio between 1.2 and 1.3. A total of 162 crossed Pietrain × (Large White × Landrace) 21-d-old piglets (50% males and 50% females) were fed adaptation diets until 42 d old and then assigned to pens with 2 pigs/pen and 9 pens/treatment in a completely randomized block design. Piglets were fed mash diets based on corn and soybean meal ad libitum for 28 d. At the end of the study, one piglet perpen was euthanized and the right feet collected for determination of bone strength, bone ash and mineral content. Compared with the PC, the NC group had reduced average daily gain (ADG) and increased feed conversion ratio (FCR) during all growth phases and overall, and at d 28 (70 d old) NC pigs had bones with reduced ash, Ca and P content (P < 0.05). The PhyG at 250 FTU/kg improved bone ash vs. NC. Increasing PhyG dose linearly or quadratically improved bone ash, ADG and FCR (P < 0.05). At ≥ 500 FTU/kg, both PhyG and PhyB maintained ADG and FCR equivalent to PC. Linear regression analysis was done to compare the measured response parameters to increasing digestible P from MCP. Based on this analysis it was shown that PhyG and PhyB at 1,000 FTU/kg could replace 1.83 and 1.66 g/kg digestible P from MCP in the diet, respectively, on average across metacarpi bone ash, ADG or FCR. These findings suggest that the biosynthetic phytase is highly effective in the tested dietary setting.

3.
Mol Biol Evol ; 29(2): 825-35, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21998276

ABSTRACT

Thermophily is thought to be a primitive trait, characteristic of early forms of life on Earth, that has been gradually lost over evolutionary time. The genus Bacillus provides an ideal model for studying the evolution of thermophily as it is an ancient taxon and its contemporary species inhabit a range of thermal environments. The thermostability of reconstructed ancestral proteins has been used as a proxy for ancient thermal adaptation. The reconstruction of ancestral "enzymes" has the added advantages of demonstrable activity, which acts as an internal control for accurate inference, and providing insights into the evolution of enzymatic catalysis. Here, we report the reconstruction of the structurally complex core metabolic enzyme LeuB (3-isopropylmalate dehydrogenase, E. C. 1.1.1.85) from the last common ancestor (LCA) of Bacillus using both maximum likelihood (ML) and Bayesian inference. ML LeuB from the LCA of Bacillus shares only 76% sequence identity with its closest contemporary homolog, yet it is fully functional, thermophilic, and exhibits high values for k(cat), k(cat)/K(M), and ΔG(‡) for unfolding. The Bayesian version of this enzyme is also thermophilic but exhibits anomalous catalytic kinetics. We have determined the 3D structure of the ML enzyme and found that it is more closely aligned with LeuB from deeply branching bacteria, such as Thermotoga maritima, than contemporary Bacillus species. To investigate the evolution of thermophily, three descendents of LeuB from the LCA of Bacillus were also reconstructed. They reveal a fluctuating trend in thermal evolution, with a temporal adaptation toward mesophily followed by a more recent return to thermophily. Structural analysis suggests that the determinants of thermophily in LeuB from the LCA of Bacillus and the most recent ancestor are distinct and that thermophily has arisen in this genus at least twice via independent evolutionary paths. Our results add significant fluctuations to the broad trend in thermal adaptation previously proposed and demonstrate that thermophily is not exclusively a primitive trait, as it can be readily gained as well as lost. Our findings also demonstrate that reconstruction of complex functional Precambrian enzymes is possible and can provide empirical access to the evolution of ancient phenotypes and metabolisms.


Subject(s)
3-Isopropylmalate Dehydrogenase/genetics , Bacillus/enzymology , Bacillus/genetics , Evolution, Molecular , 3-Isopropylmalate Dehydrogenase/metabolism , Adaptation, Physiological/genetics , Amino Acid Sequence , Bacillus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bayes Theorem , Biological Evolution , Hot Temperature , Likelihood Functions , Phylogeny
4.
J Biol Chem ; 283(45): 31142-52, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-18779323

ABSTRACT

Intrinsic structural disorder is a prevalent feature of proteins with chaperone activity. Using a complementary set of techniques, we have structurally characterized LjIDP1 (intrinsically disordered protein 1) from the model legume Lotus japonicus, and our results provide the first structural characterization of a member of the Lea5 protein family (PF03242). Contrary to in silico predictions, we show that LjIDP1 is intrinsically disordered and probably exists as an ensemble of conformations with limited residual beta-sheet, turn/loop, and polyproline II secondary structure. Furthermore, we show that LjIDP1 has an inherent propensity to undergo a large conformational shift, adopting a largely alpha-helical structure when it is dehydrated and in the presence of different detergents and alcohols. This is consistent with an overrepresentation of order-promoting residues in LjIDP1 compared with the average of intrinsically disordered proteins. In line with functioning as a chaperone, we show that LjIDP1 effectively prevents inactivation of two model enzymes under conditions that promote protein misfolding and aggregation. The LjIdp1 gene is expressed in all L. japonicus tissues tested. A higher expression level was found in the root tip proximal zone, in roots inoculated with compatible endosymbiotic M. loti, and in functional nitrogen-fixing root nodules. We suggest that the ability of LjIDP1 to prevent protein misfolding and aggregation may play a significant role in tissues, such as symbiotic root nodules, which are characterized by high metabolic activity.


Subject(s)
Lotus/metabolism , Models, Biological , Molecular Chaperones/metabolism , Protein Folding , Root Nodules, Plant/metabolism , Genetic Complementation Test/methods , Lotus/genetics , Molecular Chaperones/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Structure, Secondary , Root Nodules, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...