Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Oncol Biol Phys ; 75(4): 1266-72, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19665317

ABSTRACT

PURPOSE: To develop a technique to monitor the dose rate in the urethra during permanent implant brachytherapy using a linear MOSFET array, with sufficient accuracy and without significantly extending the implantation time. METHODS AND MATERIALS: Phantom measurements were performed to determine the optimal conditions for clinical measurements. In vivo measurements were performed in 5 patients during the (125)I brachytherapy implant procedure. To evaluate if the urethra dose obtained in the operating room with the ultrasound transducer in the rectum and the patient in treatment position is a reference for the total accumulated dose; additional measurements were performed after the implantation procedure, in the recovery room. RESULTS: In vivo measurements during and after the implantation procedure agree very well, illustrating that the ultrasound transducer in the rectum and patient positioning do not influence the measured dose in the urethra. In vivo dose values obtained during the implantation are therefore representative for the total accumulated dose in the urethra. In 5 patients, the dose rates during and after the implantation were below the maximum dose rate of the urethra, using the planned seed distribution. CONCLUSION: In vivo dosimetry during the implantation, using a MOSFET array, is a feasible technique to evaluate the dose in the urethra during the implantation of (125)I seeds for prostate brachytherapy.


Subject(s)
Brachytherapy/methods , Iodine Radioisotopes/therapeutic use , Prostatic Neoplasms/radiotherapy , Urethra/radiation effects , Calibration , Equipment Design , Feasibility Studies , Humans , Male , Maximum Tolerated Dose , Phantoms, Imaging , Radiometry/instrumentation , Radiometry/methods , Rectum
2.
Int J Radiat Oncol Biol Phys ; 73(1): 314-21, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19100925

ABSTRACT

PURPOSE: In vivo dosimetry during brachytherapy of the prostate with (125)I seeds is challenging because of the high dose gradients and low photon energies involved. We present the results of a study using metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to evaluate the dose in the urethra after a permanent prostate implantation procedure. METHODS AND MATERIALS: Phantom measurements were made to validate the measurement technique, determine the measurement accuracy, and define action levels for clinical measurements. Patient measurements were performed with a MOSFET array in the urinary catheter immediately after the implantation procedure. A CT scan was performed, and dose values, calculated by the treatment planning system, were compared to in vivo dose values measured with MOSFET dosimeters. RESULTS: Corrections for temperature dependence of the MOSFET array response and photon attenuation in the catheter on the in vivo dose values are necessary. The overall uncertainty in the measurement procedure, determined in a simulation experiment, is 8.0% (1 SD). In vivo dose values were obtained for 17 patients. In the high-dose region (> 100 Gy), calculated and measured dose values agreed within 1.7% +/- 10.7% (1 SD). In the low-dose region outside the prostate (< 100 Gy), larger deviations occurred. CONCLUSIONS: MOSFET detectors are suitable for in vivo dosimetry during (125)I brachytherapy of prostate cancer. An action level of +/- 16% (2 SD) for detection of errors in the implantation procedure is achievable after validation of the detector system and measurement conditions.


Subject(s)
Brachytherapy/methods , Iodine Radioisotopes/analysis , Iodine Radioisotopes/therapeutic use , Radiometry/instrumentation , Radiometry/methods , Relative Biological Effectiveness , Urethra , Humans , Male , Organ Specificity , Radiotherapy Dosage , Scattering, Radiation , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...