Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Talanta ; 273: 125924, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38518717

ABSTRACT

Wildlife conservation is often challenged by a lack of knowledge about the reproduction biology and adaptability of endangered species. Although monitoring steroids and related molecules can increase this knowledge, the applicability of current techniques (e.g. immunoassays) is hampered by species-specific steroid metabolism and the requisite to avoid invasive sampling. This study presents a validated steroidomics method for the (un)targeted screening of a wide range of sex and stress steroids and related molecules in urine using ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). In total, 50 steroids (conjugated and non-conjugated androgens, estrogens, progestogens and glucocorticoids) and 6 prostaglandins could be uniquely detected. A total of 45 out of 56 compounds demonstrated a detection limit below 0.01 ng µL-1. Excellent linearity (R2 > 0.99), precision (CV < 20 %), and recovery (80-120 %) were observed for 46, 41, and 39 compounds, respectively. Untargeted screening of pooled giant panda and human samples yielded 9691 and 8366 features with CV < 30 %, from which 84.1 % and 83.0 %, respectively, also demonstrated excellent linearity (R2 > 0.90). The biological validity of the method was investigated on male and female giant panda urine (n = 20), as well as pooled human samples (n = 10). A total of 24 different steroids were detected with clear qualitative and quantitative differences between human and giant panda samples. Furthermore, expected differences were revealed between female giant panda samples from different reproductive phases. In contrast to traditional biomonitoring techniques, the developed steroidomics method was able to screen a wide range of compounds and provide information on the putative identities of metabolites potentially important for reproductive monitoring in giant pandas. These results illustrate the advancements steroidomics brings to the field of wildlife biomonitoring in the pursuit to better understand the biology of endangered species.


Subject(s)
Animals, Wild , Ursidae , Animals , Male , Female , Humans , Biological Monitoring , Mass Spectrometry , Steroids/analysis , Chromatography, High Pressure Liquid/methods
2.
Oecologia ; 196(3): 667-677, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34173057

ABSTRACT

Chemical communication plays an important role in mammalian life history decisions. Animals send and receive information based on body odour secretions. Odour cues provide important social information on identity, kinship, sex, group membership or genetic quality. Recent findings show, that rodents alarm their conspecifics with danger-dependent body odours after encountering a predator. In this study, we aim to identify the chemistry of alarm pheromones (AP) in the bank vole, a common boreal rodent. Furthermore, the vole foraging efficiency under perceived fear was measured in a set of field experiments in large outdoor enclosures. During the analysis of bank vole odour by gas chromatography-mass spectrometry, we identified that 1-octanol, 2-octanone, and one unknown compound as the most likely candidates to function as alarm signals. These compounds were independent of the vole's sex. In a field experiment, voles were foraging less, i.e. they were more afraid in the AP odour foraging trays during the first day, as the odour was fresh, than in the second day. This verified the short lasting effect of volatile APs. Our results clarified the chemistry of alarming body odour compounds in mammals, and enhanced our understanding of the ecological role of AP and chemical communication in mammals.


Subject(s)
Arvicolinae , Pheromones , Animals , Cues , Fear , Odorants
4.
Oecologia ; 195(3): 601-622, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33369695

ABSTRACT

Most small rodent populations in the world have fascinating population dynamics. In the northern hemisphere, voles and lemmings tend to show population cycles with regular fluctuations in numbers. In the southern hemisphere, small rodents tend to have large amplitude outbreaks with less regular intervals. In the light of vast research and debate over almost a century, we here discuss the driving forces of these different rodent population dynamics. We highlight ten questions directly related to the various characteristics of relevant populations and ecosystems that still need to be answered. This overview is not intended as a complete list of questions but rather focuses on the most important issues that are essential for understanding the generality of small rodent population dynamics.


Subject(s)
Ecosystem , Rodentia , Animals , Arvicolinae , Disease Outbreaks , Population Dynamics
5.
Oecologia ; 190(2): 399-410, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31065806

ABSTRACT

Phenotype and life history traits of an individual are a product of environmental conditions and the genome. Environment can be current or past, which complicates the distinction between environmental and heritable effects on the phenotype in wild animals. We studied genome-environment interactions on phenotype and life history traits by transplanting bank voles (Myodes glareolus) from northern and southern populations, originating from low or high population cycle phases, to common garden conditions in large outdoor enclosures. The first experiment focused on the persistence of body traits in autumn-captured overwintering populations. The second experiment focused on population growth and body traits in spring-captured founder voles and F1 generation. This experiment lasted the breeding season and subsequent winter. We verified phase-dependent differences in body size at capture. In the common environment, adult voles kept their original body size differences both over winter and during the breeding season. In addition, the first generation born in the common environment kept the size distribution of their parent population. The increase phase population maintained a more rapid growth potential, while populations from the decline phase of the cycle grew slower. After winter, the F1 generation of the increasing northern population matured later than the F1 of the southern declining ones. Our results suggest a strong role of heredity or early life conditions, greater than that of current juvenile and adult environmental conditions. Environmental conditions experienced by the parents in their early life can have inter-generational effects that manifest in offspring performance.


Subject(s)
Arvicolinae , Life History Traits , Animals , Population Dynamics , Reproduction , Seasons
6.
Integr Zool ; 14(4): 327-340, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30811858

ABSTRACT

Climate change, habitat loss and fragmentation are major threats for populations and a challenge for individual behavior, interactions and survival. Predator-prey interactions are modified by climate processes. In the northern latitudes, strong seasonality is changing and the main predicted feature is shortening and instability of winter. Vole populations in the boreal Fennoscandia exhibit multiannual cycles. High amplitude peak numbers of voles and dramatic population lows alternate in 3-5-year cycles shortening from North to South. One key factor, or driver, promoting the population crash and causing extreme extended lows, is suggested to be predation by the least weasel. We review the arms race between prey voles and weasels through the multiannual density fluctuation, affected by climate change, and especially the changes in the duration and stability of snow cover. For ground-dwelling small mammals, snow provides thermoregulation and shelter for nest sites, and helps them hide from predators. Predicted increases in the instability of winter forms a major challenge for species with coat color change between brown summer camouflage and white winter coat. One of these is the least weasel, Mustela nivalis nivalis. Increased vulnerability of wrong-colored weasels to predation affects vole populations and may have dramatic effects on vole dynamics. It may have cascading effects on other small rodent-predator interactions and even on plant-animal interactions and forest dynamics.


Subject(s)
Arvicolinae/physiology , Climate Change , Food Chain , Mustelidae/physiology , Animals , Finland , Norway , Sweden
7.
Behav Ecol Sociobiol ; 72(12): 187, 2018.
Article in English | MEDLINE | ID: mdl-30573941

ABSTRACT

ABSTRACT: Prey strategically respond to the risk of predation by varying their behavior while balancing the tradeoffs of food and safety. We present here an experiment that tests the way the same indirect cues of predation risk are interpreted by bank voles, Myodes glareolus, as the game changes through exposure to a caged weasel. Using optimal patch use, we asked wild-caught voles to rank the risk they perceived. We measured their response to olfactory cues in the form of weasel bedding, a sham control in the form of rabbit bedding, and an odor-free control. We repeated the interviews in a chronological order to test the change in response, i.e., the changes in the value of the information. We found that the voles did not differentiate strongly between treatments pre-exposure to the weasel. During the exposure, vole foraging activity was reduced in all treatments, but proportionally increased in the vicinity to the rabbit odor. Post-exposure, the voles focused their foraging in the control, while the value of exposure to the predator explained the majority of variation in response. Our data also suggested a sex bias in interpretation of the cues. Given how the foragers changed their interpretation of the same cues based on external information, we suggest that applying predator olfactory cues as a simulation of predation risk needs further testing. For instance, what are the possible effective compounds and how they change "fear" response over time. The major conclusion is that however effective olfactory cues may be, the presence of live predators overwhelmingly affects the information voles gained from these cues. SIGNIFICANCE STATEMENT: In ecology, "fear" is the strategic response to cues of risk an animal senses in its environment. The cues suggesting the existence of a predator in the vicinity are weighed by an individual against the probability of encounter with the predator and the perceived lethality of an encounter with the predator. The best documented such response is variation in foraging tenacity as measured by a giving-up density. In this paper, we show that an olfactory predator cue and the smell of an interspecific competitor result in different responses based on experience with a live-caged predator. This work provides a cautionary example of the risk in making assumptions regarding olfactory cues devoid of environmental context.

8.
Physiol Behav ; 159: 45-51, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26976741

ABSTRACT

Many boreal rodents are territorial during the breeding season but during winter become social and aggregate for more energy efficient thermoregulation. Communal winter nesting and social interactions are considered to play an important role for the winter survival of these species, yet the topic is relatively little explored. Females are suggested to be the initiators of winter aggregations and sometimes reported to survive better than males. This could be due to the higher social tolerance observed in overwintering females than males. Hormonal status could also affect winter behavior and survival. For instance, chronic stress can have a negative effect on survival, whereas high gonadal hormone levels, such as testosterone, often induce aggressive behavior. To test if the winter survival of females in a boreal rodent is better than that of males, and to assess the role of females in the winter aggregations, we generated bank vole (Myodes glareolus) populations of three different sex ratios (male-biased, female-biased and even density) under semi-natural conditions. We monitored survival, spatial behavior and hormonal status (stress and testosterone) during two winter months. We observed no significant differences in survival between the sexes or among populations with differing sex-ratios. The degree of movement area overlap was used as an indicator of social tolerance and potential communal nesting. Individuals in male biased populations showed a tendency to be solitary, whereas in female biased populations there was an indication of winter aggregation. Females living in male-biased populations had higher stress levels than the females from the other populations. The female-biased sex-ratio induced winter breeding and elevated testosterone levels in males. Thus, our results suggest that the sex-ratio of the overwintering population can lead to divergent overwintering strategies in bank voles.


Subject(s)
Arvicolinae/physiology , Sex Ratio , Animals , Arvicolinae/psychology , Corticosterone/analysis , Corticosterone/physiology , Feces/chemistry , Female , Male , Seasons , Sexual Behavior, Animal/physiology , Social Behavior , Spatial Behavior/physiology , Testosterone/analysis , Testosterone/physiology
9.
Behav Ecol Sociobiol ; 69(5): 747-754, 2015.
Article in English | MEDLINE | ID: mdl-25926712

ABSTRACT

Parental care often produces a trade-off between meeting nutritional demands of offspring and the duties of offspring protection, especially in altricial species. Parents have to leave their young unattended for foraging trips, during which nestlings are exposed to predators. We investigated how rodent mothers of altricial young respond to risk of nest predation in their foraging decisions. We studied foraging behavior of lactating bank voles (Myodes glareolus) exposed to a nest predator, the common shrew (Sorex araneus). We conducted the experiment in summer (high resource provisioning for both species) and autumn (less food available) in 12 replicates with fully crossed factors "shrew presence" and "season." We monitored use of feeding stations near and far from the nest as measurement of foraging activity and strategic foraging behavior. Vole mothers adapted their strategies to shrew presence and optimized their foraging behavior according to seasonal constraints, resulting in an interaction of treatment and season. In summer, shrew presence reduced food intake from feeding stations, while it enhanced intake in autumn. Shrew presence decreased the number of visited feeding stations in autumn and concentrated mother's foraging efforts to fewer stations. Independent of shrew presence or season, mothers foraged more in patches further away from the nest than near the nest. Results indicate that females are not investing in nest guarding but try to avoid the accumulation of olfactory cues near the nest leading a predator to the young. Additionally, our study shows how foraging strategies and nest attendance are influenced by seasonal food provision.

10.
Oecologia ; 173(4): 1227-35, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23728797

ABSTRACT

The relationship between predators and prey is thought to change due to habitat loss and fragmentation, but patterns regarding the direction of the effect are lacking. The common prediction is that specialized predators, often more dependent on a certain habitat type, should be more vulnerable to habitat loss compared to generalist predators, but actual fragmentation effects are unknown. If a predator is small and vulnerable to predation by other larger predators through intra-guild predation, habitat fragmentation will similarly affect both the prey and the small predator. In this case, the predator is predicted to behave similarly to the prey and avoid open and risky areas. We studied a specialist predator's, the least weasel, Mustela nivalis nivalis, spacing behavior and hunting efficiency on bank voles, Myodes glareolus, in an experimentally fragmented habitat. The habitat consisted of either one large habitat patch (non-fragmented) or four small habitat patches (fragmented) with the same total area. The study was replicated in summer and autumn during a year with high avian predation risk for both voles and weasels. As predicted, weasels under radio-surveillance killed more voles in the non-fragmented habitat which also provided cover from avian predators during their prey search. However, this was only during autumn, when the killing rate was also generally high due to cold weather. The movement areas were the same for both sexes and both fragmentation treatments, but weasels of both sexes were more prone to take risks in crossing the open matrix in the fragmented treatment. Our results support the hypothesis that habitat fragmentation may increase the persistence of specialist predator and prey populations if predators are limited in the same habitat as their prey and they share the same risk from avian predation.


Subject(s)
Arvicolinae , Ecosystem , Mustelidae , Predatory Behavior , Animals , Female , Male , Models, Statistical , Raptors , Seasons
11.
J Anim Ecol ; 81(6): 1183-1192, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22686945

ABSTRACT

1. In seasonal environments, optimal onset of breeding and survival plays major roles in individual fitness. Many physiological and behavioural factors related to breeding increase the risk of predation; thus, breeding decisions should be based on current risks and benefits. According to life-history theory, if current predation risk is high and breeding itself increases the risk, it may be beneficial to postpone breeding. 2. During winter in northern hemispheres, food availability is limited and is at its lowest just prior to the onset of breeding in spring. Food constraint may lead to poor condition and reduced ability to start breeding. 3. We studied the effects of food and predation risk on winter survival and onset of breeding in a common boreal rodent, the bank vole (Myodes glareolus). In a 2 × 2 factorial experiment, we manipulated food availability (food supplemented or not) and predation risk (presence/absence of predator odour) in 20 large outdoor enclosures in central Finland. 4. Survival probabilities were highest in no predation risk treatments, whereas they were lowest in the predator risk treatment. The same trend was observed in vole densities and the weight change in individuals. Voles with food addition bred earlier than in the other treatments. 5. We conclude that during energy constrained harsh conditions in winter, predation risk causes behavioural changes throughout the winter and has significant negative survival and fitness effects for small mammals, reflected as delay in the start of breeding.


Subject(s)
Arvicolinae/physiology , Feeding Behavior , Food Chain , Reproduction , Animals , Body Weight , Diet , Female , Finland , Male , Population Dynamics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...