Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(23): 29621-29633, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38806169

ABSTRACT

The ongoing challenge of viral transmission, exemplified by the Covid pandemic and recurrent viral outbreaks, necessitates the exploration of sustainable antiviral solutions. This study investigates the underexplored antiviral potential of wooden surfaces. We evaluated the antiviral efficacy of various wood types, including coniferous and deciduous trees, against enveloped coronaviruses and nonenveloped enteroviruses like coxsackie virus A9. Our findings revealed excellent antiviral activity manifesting already within 10 to 15 min in Scots pine and Norway spruce, particularly against enveloped viruses. In contrast, other hardwoods displayed varied efficacy, with oak showing effectiveness against the enterovirus. This antiviral activity was consistently observed across a spectrum of humidity levels (20 to 90 RH%), while the antiviral efficacy manifested itself more rapidly at 37 °C vs 21 °C. Key to our findings is the chemical composition of these woods. Resin acids and terpenes were prevalent in pine and spruce, correlating with their antiviral performance, while oak's high phenolic content mirrored its efficacy against enterovirus. The pine surface absorbed a higher fraction of the coronavirus in contrast to oak, whereas enteroviruses were not absorbed on those surfaces. Thermal treatment of wood or mixing wood with plastic, such as in wood-plastic composites, strongly compromised the antiviral functionality of wood materials. This study highlights the role of bioactive chemicals in the antiviral action of wood and opens new avenues for employing wood surfaces as a natural and sustainable barrier against viral transmissions.


Subject(s)
Antiviral Agents , Enterovirus , Wood , Wood/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Enterovirus/drug effects , Coronavirus/drug effects , Virus Inactivation/drug effects , Surface Properties , Quercus/chemistry , Humans , Pinus/chemistry , Picea/chemistry , Trees/virology
2.
Sci Total Environ ; 925: 171821, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38513866

ABSTRACT

Microplastic (MP) pollution is a persisting global problem. Accurate analysis is essential in quantifying the effects of microplastic pollution and develop novel technologies that reliably and reproducibly measure microplastic content in various samples. The most common methods for this are FTIR and Raman spectroscopy. Coloured, standardized beads are often used for method validation tests, which limits the conclusions to a very specific case rarely observed in the natural environment. This study focuses on the preparation of reference micro- and nanoplastics via cryogenic milling and shows their use for FTIR and Raman method validation studies. MPs can now be reproducibly milled from various plastics, offering the advantages of a better representation of MPs in real environment. Moreover, this study highlights issues with the current detection methods, up to now considered as the most reliable ones for MP detection and identification. Such issues, e.g. misidentification, will need to be addressed in the future. Additionally, milled MPs were used in experiments with commercial high-resolution imaging device, enabling a possible in-situ optical detection of microplastics. These experiments represent a step forward in understanding MPs in a water sample and provide a basis for a more accurate detection and identification directly from water, which would considerably reduce the time of analysis.

3.
Microbiol Spectr ; 12(2): e0300823, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38226803

ABSTRACT

Viruses may persist on solid surfaces for long periods, which may contribute to indirect transmission. Thus, it is imperative to develop functionalized surfaces that will lower the infectious viral load in everyday life. Here, we have tested a plastic surface functionalized with tall oil rosin against the seasonal human coronavirus OC43 as well as severe acute respiratory syndrome coronavirus 2. All tested non-functionalized plastic surfaces showed virus persistence up to 48 h. In contrast, the functionalized plastic showed good antiviral action already within 15 min of contact and excellent efficacy after 30 min over 90% humidity. Excellent antiviral effects were also observed at lower humidities of 20% and 40%. Despite the hydrophilic nature of the functionalized plastic, viruses did not adhere strongly to it. According to helium ion microscopy, viruses appeared flatter on the rosin-functionalized surface, but after flushing away from the rosin-functionalized surface, they showed no apparent structural changes when imaged by transmission electron microscopy of cryogenic or negatively stained specimens or by atomic force microscopy. Flushed viruses were able to bind to their host cell surface and enter endosomes, suggesting that the fusion with the endosomal membrane was halted. The eluted rosin from the functionalized surface demonstrated its ability to inactivate viruses, indicating that the antiviral efficacy relied on the active leaching of the antiviral substances, which acted on the viruses coming into contact. The rosin-functionalized plastic thus serves as a promising candidate as an antiviral surface for enveloped viruses.IMPORTANCEDuring seasonal and viral outbreaks, the implementation of antiviral plastics can serve as a proactive strategy to limit the spread of viruses from contaminated surfaces, complementing existing hygiene practices. In this study, we show the efficacy of a rosin-functionalized plastic surface that kills the viral infectivity of human coronaviruses within 15 min of contact time, irrespective of the humidity levels. In contrast, non-functionalized plastic surfaces retain viral infectivity for an extended period of up to 48 h. The transient attachment on the surface or the leached active components do not cause major structural changes in the virus or prevent receptor binding; instead, they effectively block viral infection at the endosomal stage.


Subject(s)
Viruses , Humans , SARS-CoV-2 , Hydrophobic and Hydrophilic Interactions , Antiviral Agents
4.
PeerJ ; 11: e16355, 2023.
Article in English | MEDLINE | ID: mdl-38025723

ABSTRACT

Humans are exposed to diverse communities of microbes every day. With more time spent indoors by humans, investigations into the communities of microbes inhabiting occupied spaces have become important to deduce the impacts of these microbes on human health and building health. Studies so far have given considerable insight into the communities of the indoor microbiota humans interact with, but mainly focus on sampling surfaces or indoor dust from filters. Beneath the surfaces though, building envelopes have the potential to contain environments that would support the growth of microbial communities. But due to design choices and distance from ground moisture, for example, the temperature and humidity across a building will vary and cause environmental gradients. These microenvironments could then influence the composition of the microbial communities within the walls. Here we present a case study designed to quantify any patterns in the compositions of fungal and bacterial communities existing in a building envelope and determine some of the key variables, such as cardinal direction, distance from floor or distance from wall joinings, that may influence any microbial community composition variation. By drilling small holes across walls of a house, we extracted microbes onto air filters and conducted amplicon sequencing. We found sampling height (distance from the floor) and cardinal direction the wall was facing caused differences in the diversity of the microbial communities, showing that patterns in the microbial composition will be dependent on sampling location within the building. By sampling beneath the surfaces, our approach provides a more complete picture of the microbial condition of a building environment, with the significant variation in community composition demonstrating a potential sampling bias if multiple sampling locations across a building are not considered. By identifying features of the built environment that promote/retard microbial growth, improvements to building designs can be made to achieve overall healthier occupied spaces.


Subject(s)
Microbiota , Humans , Selection Bias , Microbiota/genetics , Dust/analysis , Bacteria/genetics , Humidity
5.
Polymers (Basel) ; 15(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36771776

ABSTRACT

This article explores wood-fiber-based fabrics containing Lyocell yarn in the warp and Spinnova-Lyocell (60%/40%) yarn in the weft, which are used to form unidirectional all-cellulose composites (ACC) through partial dilution in a NaOH-urea solution. The aim is to investigate the role of the yarn orientation in composites, which was conducted by measuring the tensile properties in both the 0° and 90° directions. As a reference, thermoplastic biocomposites were prepared from the same fabrics, with biobased polypropylene (PP) as the matrix. We also compared the mechanical and thermal properties of the ACC and PP biocomposites. The following experiments were carried out: tensile test, TGA, DSC, DMA, water absorption test and SEM. The study found no significant difference in tensile strength regarding the Spinnova-Lyocell orientation between ACC and PP biocomposites, while the composite tensile strength was clearly higher in the warp (Lyocell) direction for both composite variants. Elongation at break doubled in ACC in the Lyocell direction compared with the other samples. Thermal analysis showed that mass reduction started at a lower temperature for ACC, but the thermal stability was higher compared with the PP biocomposites. Maximum thermal degradation temperature was measured as being 352 °C for ACC and 466 °C for neat PP, and the PP biocomposites had two peaks in the same temperature range (340-474 °C) as ACC and neat PP combined. ACCs absorbed 93% of their own dry weight in water in just one hour, whereas the PP biocomposites BC2 and BC4 absorbed only 10% and 6%, respectively. The study highlights the different properties of ACC and PP reference biocomposites that could lead to further development and research of commercial applications for ACC.

6.
Polymers (Basel) ; 14(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36235906

ABSTRACT

All-cellulose composites (ACCs) are manufactured using only cellulose as a raw material. Biobased materials are more sustainable alternatives to the petroleum-based composites that are used in many technical and life-science applications. In this study, an aquatic NaOH-urea solvent system was used to produce sustainable ACCs from wood-based woven textiles with and without the addition of TEMPO-oxidized nanocellulose (at 1 wt.-%). This study investigated the effects of dissolution time, temperature during hot press, and the addition of TEMPO-oxidized nanocellulose on the mechanical and thermal properties of the composites. The results showed a significant change in the tensile properties of the layered textile composite at dissolution times of 30 s and 1 min, while ACC elongation was the highest after 2 and 5 min. Changes in hot press temperature from 70 °C to 150 °C had a significant effect: with an increase in hot press temperature, the tensile strength increased and the elongation at break decreased. Incorporating TEMPO-oxidized nanocellulose into the interface of textile layers before partial dissolution improved tensile strength and, even more markedly, the elongation at break. According to thermal analyses, textile-based ACCs have a higher storage modulus (0.6 GPa) and thermal stabilization than ACCs with nanocellulose additives. This study highlights the important roles of process conditions and raw material characteristics on the structure and properties of ACCs.

7.
Int J Orthop Trauma Nurs ; 47: 100956, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36257127

ABSTRACT

Patient counselling is a key function in nursing. High-quality counselling promotes adherence to treatment and reduces complications. The purpose of the study was to describe the quality of counselling experienced by total knee arthroplasty patients following surgery. The study was a descriptive cross-sectional study. The data were collected from patients following total knee arthroplasty (N = 60) in 2016 with a modified Quality of Counselling Instrument, and analysed using statistical methods. Over half of the patients (58%) were women and the mean age was 68 years (range 49-84). Over a quarter of patients (28.9%) lived alone, and about two-thirds were overweight (42.1%), or obese (31.6%). After surgery, many patients (88%) experienced moderate pain. Half of patients (52.6%) received a good quality of counselling for the disease and its treatment, and counselling for recovery from treatment (81.6%) was good. Most patients (92.1%) received satisfactory counselling about physical activity. There was a correlation between the disease and its treatment counselling and quality of life (r = -0.553, p = 0.003) and pain (r = -0657, p = 0.000). Interaction during counselling was good (97.4%) and it was implemented in a patient-centred way (89.5%). High-quality counselling implemented in a patient-centred manner can play a part in reducing pain and increasing patients' quality of life.


Subject(s)
Arthroplasty, Replacement, Knee , Osteoarthritis, Knee , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Male , Arthroplasty, Replacement, Knee/adverse effects , Cross-Sectional Studies , Quality of Life , Counseling , Pain , Osteoarthritis, Knee/surgery
8.
ACS Omega ; 6(14): 9771-9779, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33869957

ABSTRACT

The tree bark represents an abundant but currently underutilized forest biomass side stream. In this work, temperature-programmed slow pyrolysis with fractional condensation was used for thermochemical conversion of the bark obtained from three short rotation tree species, aspen, goat willow, and rowan. Heating was performed in three stages, drying (135 °C), torrefaction (275 °C), and pyrolysis (350 °C), and the resulting vapors were condensed at 120, 70, and 5 °C, producing nine liquid fractions. An additional fraction was collected in the pyrolysis stage at 0 °C. The obtained liquid fractions were characterized in terms of their yields and bulk chemistry (i.e., CHNOS content, water content, pH, and total acid number) as well as their molecular level chemistry by high-resolution mass spectrometry. The highest liquid yields were obtained for the fractions condensed at 70 °C. The water content varied considerably, being the highest for the drying fractions (>96%) and the lowest for the pyrolysis fractions obtained at 120 °C (0.1-2%). Considerable compositional differences were observed between the liquid fractions. While the drying fractions contained mostly some dissolved phenolics, the torrefaction fractions contained more sugaric compounds. In contrast, the pyrolysis fractions were enriched lipids (e.g., suberinic fatty acids and their derivatives) and alicyclic/aromatic hydrocarbons. These fractions could be further refined into different platforms and/or specialty chemicals. Thus, slow pyrolysis with fractional condensation offers a potential route for the valorization of tree bark residues from forest industry.

9.
Sci Total Environ ; 753: 142013, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-32890867

ABSTRACT

Companies in the wood industry are constantly developing their outdoor products. The possibility of using bio-based chemicals as an alternative to traditional wood preservatives-regulated in Europe by The Biocidal Products Regulation No 528/2012-has been considered, but chemical leaching from the wood decreases its effectiveness and may negatively affect the environment. This study aims to compare the effectiveness of bio-based chemicals with potential use in wood preservation to commercially available preservatives, to investigate their fixation to wood and their ecotoxicity and to quantify the potentially toxic elements leached from the wood. Pyrolysis distillates of tree bark, organic acids found in distillates, Colatan GT10 tannin extract and log soaking liquid as a hardwood veneer process residue were tested and compared with commercial pine oil and a copper-based wood preservative. In the wood decay test of impregnated pine sapwood specimens, Colatan GT10 extract performed as well as the commercial wood preservatives. The same decay trial with leached specimens significantly reduced the performance of the bio-based chemicals. The results of the ecotoxicity test with photoluminescent Aliivibrio fischeri bacteria showed that many bio-based chemicals with potential use in wood preservation have markedly lower ecotoxicity than commercially available wood preservatives, but the ecotoxicity of some bio-based chemicals is higher, as in the case of some of the pyrolysis distillates. The wood preservation efficiency and the ecotoxicity of the studied chemicals had a poor correlation, implying that other factors besides treatment agent toxicity play a role in deterring fungal growth on treated wood. The amount of elemental toxins in the leachates was low. These results emphasize the importance of the chemical ecotoxicity of bio-based preservative compounds, as their detrimental effect on the environment can be higher than that of the traditional preservatives unless effectively linked to wood to prevent leaching.


Subject(s)
Pinus , Wood , Copper/analysis , Copper/toxicity , Europe , Fungi , Wood/chemistry
10.
ACS Appl Mater Interfaces ; 9(3): 2846-2855, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-27997111

ABSTRACT

Deep eutectic solvents (DESs) are a fairly new class of green solvents applied in various fields. This study investigates urea-based DES systems as novel pretreatments for cellulose nanofibril production. In the experiments, deep eutectic systems having urea and ammonium thiocyanate or guanidine hydrochloride as a second component were formed at 100 °C and then applied to disintegrate wood-derived cellulose fibers. The DES-pretreated fibers were nanofibrillated into three different levels of mechanical treatments with a microfluidizer, and their properties were analyzed. Moreover, nanofibril films were fabricated by solvent casting method. Both DES systems were able to loosen and swell the cellulose fiber structure as indicated by the increase in the lateral dimension of the fibers. Nonpretreated birch cellulose fibers had difficulties in mechanical nanofibrillation as clogging of the chamber occurred often. However, cellulose nanofibrils with widths ranging from 13.0 to 19.3 nm were successfully fabricated from DES-pretreated fibers with both systems. Translucent nanofibril films generated from DES-pretreated cellulose nanofibrils had good thermal stability and mechanical properties, with tensile strengths of approximately 135-189 MPa and elastic modulus of 6.4-7.7 GPa. Consequently, both urea-based DESs showed a high potential as environmentally friendly solvents in the manufacture of cellulose nanofibrils.

11.
Waste Manag ; 54: 62-73, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27184447

ABSTRACT

Natural fiber-polymer composites (NFPCs) are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residues from the industrial and agricultural processes are still underutilized as low-value energy sources. Organic materials are commonly disposed of or subjected to the traditional waste management methods, such as landfilling, composting or anaerobic digestion. The use of organic waste and residue materials in NFPCs represents an ecologically friendly and a substantially higher value alternative. This is a comprehensive review examining how organic waste and residues could be utilized in the future as reinforcements or additives for NFPCs from the perspective of the recently reported work in this field.


Subject(s)
Agriculture , Forestry , Industrial Waste , Polymers , Recycling/methods , Energy-Generating Resources , Waste Management
12.
Carbohydr Polym ; 102: 584-9, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24507322

ABSTRACT

To fabricate a strong hydrophilic barrier layer for ultrafiltration (UF) membranes, 2,3-dicarboxylic acid cellulose nanofibrils with high anionic surface charge density (1.2 mekv/g at pH 7) and a width of 22 ± 4 nm were used. A simple vacuum filtration method combined with a solvent exchange procedure resulted in a porous layer with a thickness of ∼ 0.85 µm. The fabricated membranes reached high rejection efficiencies (74-80%) when aqueous dextrans up to 35-45 kDa were filtrated to evaluate the molecular weight cut-offs (MWCO). A linear correlation between the barrier layer thickness and the flux rate was observed in all tested cases. Further optimization of the barrier layer thickness can lead to an even more effective structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...