Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 30(14): e1706529, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29484716

ABSTRACT

Low roll-off angle, high impalement pressure, and mechanical robustness are key requirements for super-liquid-repellent surfaces to realize their potential in applications ranging from gas exchange membranes to protective and self-cleaning materials. Achieving these properties is still a challenge with superamphiphobic surfaces, which can repel both water and low-surface-tension liquids. In addition, fabrication procedures of superamphiphobic surfaces are typically slow and expensive. Here, by making use of liquid flame spray, a silicon dioxide-titanium dioxide nanostructured coating is fabricated at a high velocity up to 0.8 m s-1 . After fluorosilanization, the coating is superamphiphobic with excellent transparency and an extremely low roll-off angle; 10 µL drops of n-hexadecane roll off the surface at inclination angles even below 1°. Falling drops bounce off when impacting from a height of 50 cm, demonstrating the high impalement pressure of the coating. The extraordinary properties are due to a pronounced hierarchical nanotexture of the coating.

2.
Nanotechnology ; 29(18): 185708, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29451126

ABSTRACT

Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

3.
Nanotechnol Sci Appl ; 10: 137-145, 2017.
Article in English | MEDLINE | ID: mdl-29180854

ABSTRACT

Bacterial infections, especially by antimicrobial resistant (AMR) bacteria, are an increasing problem worldwide. AMR is especially a problem with health care-associated infections due to bacteria in hospital environments being easily transferred from patient to patient and from patient to environment, and thus, solutions to prevent bacterial transmission are needed. Hand washing is an effective tool for preventing bacterial infections, but other approaches such as nanoparticle-coated surfaces are also needed. In the current study, direct and indirect liquid flame spray (LFS) method was used to produce silver nanoparticle-coated surfaces. The antimicrobial properties of these nanoparticle surfaces were evaluated with the "touch test" method against Escherichia coli and Staphylococcus aureus. It was shown in this study that in glass samples one silver nanoparticle-coating cycle can inhibit E. coli growth, whereas at least two coating cycles were needed to inhibit S. aureus growth. Silver nanoparticle-coated polyethylene (PE) and PE terephthalate samples did not inhibit bacterial growth as effectively as glass samples: three nanoparticle-coating cycles were needed to inhibit E. coli growth, and more than 30 coating cycles were needed until S. aureus growth was inhibited. To conclude, with the LFS method, it is possible to produce nanostructured large-area antibacterial surfaces which show antibacterial effect against clinically relevant pathogens. Results indicate that the use of silver nanoparticle surfaces in hospital environments could prevent health care-associated infections in vivo.

4.
Int J Biol Macromol ; 103: 268-274, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28499944

ABSTRACT

Plasma deposition, liquid flame spray (LFS) and atomic layer deposition (ALD) were used to form inorganic coatings in new exopolysaccharide (FucoPol) biodegradable films. Coated films were characterised in terms of surface, optical and barrier properties in order to evaluate their potential use in food packaging. FucoPol films presented dense and homogeneous surface with instant water contact angle of 95̊. Plasma deposition of perfluorohexane (PFH) on FucoPol surface has not shown significant improvement in the hydrophobic behaviour over the time. The FucoPol coating of SiO2 nanoparticles deposited by LFS and plasma deposition of PFH have shown higher instant water contact angle (135°) caused by coating surface roughness, but this hydrophobic behaviour was not stable over time. FucoPol films coated only with TiO2 deposited by ALD and combination of that with plasma deposition of PFH have shown stable water contact angle during time (90̊ and 115̊, respectively), transparency in the same order of magnitude and significantly lower permeability to water vapour (3.45×10-11mol/m s Pa and 3.45×10-11mol/m s Pa when compared to uncoated films with 5.32×10-11mol/m s Pa). Moreover, films coated with TiO2-PFH have also shown a permeability to oxygen of 1.70×10-16molm/m2sPa which is 67% lower than uncoated films.


Subject(s)
Polysaccharides/chemistry , Hydrophobic and Hydrophilic Interactions , Oxygen/chemistry , Permeability , Plasma Gases/chemistry , Steam , Temperature , Titanium/chemistry
5.
J Colloid Interface Sci ; 468: 21-33, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26821148

ABSTRACT

The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7°C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4°C and -7°C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost formation to occur.

6.
ACS Appl Mater Interfaces ; 6(22): 20060-6, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25336235

ABSTRACT

Paper-based devices provide an alternative technology for simple, low-cost, portable, and disposable diagnostic tools for many applications, including clinical diagnosis, food quality control, and environmental monitoring. In this study we report a two-step fabrication process for creating two-dimensional microfluidic channels to move liquids on a hydrophobized paper surface. A highly hydrophobic surface was created on paper by TiO2 nanoparticle coating using a high-speed, roll-to-roll liquid flame spray technique. The hydrophilic pattern was then generated by UV irradiation through a photomask utilizing the photocatalytic property of TiO2. The flow dynamics of five model liquids with differing surface tensions 48-72 mN·m(-1) and viscosities 1-15 mN·m(-2) was studied. The results show that the liquid front (l) in a channel advances in time (t) according to the power law l=Zt0.5 (Z is an empirical constant which depend on the liquid properties and channel dimensions). The flow dynamics of the liquids with low viscosity show a dependence on the channel width and the droplet volume, while the flow of liquids with high viscosity is mainly controlled by the viscous forces.


Subject(s)
Microfluidics , Paper , Catalysis , Hydrophobic and Hydrophilic Interactions , Metal Nanoparticles/chemistry , Surface Tension , Titanium/chemistry , Ultraviolet Rays , Viscosity
7.
Nanoscale Res Lett ; 8(1): 444, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24160373

ABSTRACT

Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross‒sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure. PACS: 61.46.-w; 68.08.Bc; 81.07.-b.

8.
Langmuir ; 29(11): 3780-90, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23425198

ABSTRACT

The chemical composition of a TiO2 nanoparticle coated paper surface was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study the interconnection between wettability and surface chemistry on the nanoscale. In this work, a superhydrophobic TiO2 surface rich in carboxyl-terminated molecules was created by a liquid flame spray process. The TiO2 nanoparticle coated paper surface can be converted by photocatalytic oxidation into a highly hydrophilic one. Interestingly, the hydrophilic surface can be converted back into a superhydrophobic surface by heat treatment. The results showed that both ultraviolet A (UVA) and oven treatment induce changes in the surface chemistry within a few nanometers of the paper surface. These findings are consistent with those from our previously reported X-ray photoelectron spectroscopy (XPS) analysis, but the ToF-SIMS analysis yields more accurate insight into the surface chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...