Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 187(13): 3262-3283.e23, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38815580

ABSTRACT

In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.


Subject(s)
Cell Cycle Proteins , Heterochromatin , Histone-Lysine N-Methyltransferase , Histones , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Cell Cycle Proteins/metabolism , Centromere/metabolism , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Methylation , Methyltransferases/metabolism , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , RNA, Fungal/genetics , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...