Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(5)2023 May 06.
Article in English | MEDLINE | ID: mdl-37242666

ABSTRACT

The intranasal route of drug administration offers an opportunity to bypass the blood-brain barrier and deliver compounds directly into the brain. Scientific evidence exists for medicinal plants (e.g., Centella asiatica and Mesembryanthemum tortuosum) to treat central nervous system conditions such as anxiety and depression. The ex vivo permeation of selected phytochemicals (i.e., asiaticoside and mesembrine) has been measured across excised sheep nasal respiratory and olfactory tissue. Permeation studies were conducted on individual phytochemicals and C. asiatica and M. tortuosum crude extracts. Asiaticoside exhibited statistically significantly higher permeation across both tissues when applied alone as compared to the C. asiatica crude extract, while mesembrine permeation was similar when applied alone or as M. tortuosum crude extract. Permeation of all the phytocompounds was similar or slightly higher than that of the drug atenolol across the respiratory tissue. Permeation of all the phytocompounds was similar to or slightly lower than that of atenolol across the olfactory tissue. In general, the permeation was higher across the olfactory epithelial tissue than across the respiratory epithelial tissue and therefore showed potential for direct nose-to-brain delivery of the selected psychoactive phytochemicals.

2.
Biopharm Drug Dispos ; 44(1): 94-112, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36736328

ABSTRACT

The intranasal route of administration provides a noninvasive method to deliver drugs into the systemic circulation and/or directly into the brain. Direct nose-to-brain drug delivery offers the possibility to treat central nervous system diseases more effectively, as it can evade the blood-brain barrier. In vitro and ex vivo intranasal models provide a means to investigate physiological and pharmaceutical factors that could play a role in drug delivery across the nasal epithelium as well as to determine the mechanisms involved in drug absorption from the nose. The development and implementation of cost-effective pharmacokinetic models for intranasal drug delivery with good in vitro-in vivo correlation can accelerate pharmaceutical drug product development and improve economic and ecological aspects by reducing the time and costs spent on animal studies. Special considerations should be made with regard to the purpose of the in vitro/ex vivo study, namely, whether it is intended to predict systemic or brain delivery, source and site of tissue or cell sampling, viability window of selected model, and the experimental setup of diffusion chambers. The type of model implemented should suit the relevant needs and requirements of the project, researcher, and interlaboratory. This review aims to provide an overview of in vitro and ex vivo models that have been developed to study intranasal and direct nose-to-brain drug delivery.


Subject(s)
Brain , Drug Delivery Systems , Animals , Brain/metabolism , Administration, Intranasal , Drug Delivery Systems/methods , Blood-Brain Barrier/metabolism , Pharmaceutical Preparations/metabolism , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...