Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(21): 17670-17678, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664587

ABSTRACT

The number of newly synthesized and produced organic chemicals has increased extremely quickly. However, the measurements of their physical properties, including their vapor-liquid equilibrium (VLE) data, are time-consuming. It so happens that there is no physical property data about a brand-new chemical. Therefore, the importance of calculating their physicochemical properties has been playing a more and more important role. 4,6-Dichloropyrimidine (DCP) is also a relatively new molecule of high industrial importance with little existing data. Therefore, their measurements and the comparison with the calculated data are of paramount concern. DCP is a widespread heterocyclic moiety that is present in synthetic pharmacophores with biological activities as well as in numerous natural products. Isobaric VLE for the binary system of 4,6-dichloropyrimidine and its main solvent monochlorobenzene (MCB) was measured using a vapor condensate and liquid circulation VLE apparatus for the first time in the literature. Density functional-based VLE was calculated using the COSMO-SAC protocol to verify the laboratory results. The COSMO-SAC calculation was found to be capable of representing the VLE data with high accuracy. Adequate agreement between the experimental and calculated VLE data was acquired with a minimal deviation of 3.0 × 10-3, which allows for broader use of the results.

2.
ACS Omega ; 6(2): 1289-1298, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33490788

ABSTRACT

Acetaldehyde diethyl acetal (herein called acetal) is an important pollutant of anhydrous ethanol. Isobaric vapor-liquid equilibrium (VLE) of an ethanol-acetal binary system was measured using a vapor condensate and liquid circulation VLE still. The experimental data were correlated with Wilson, nonrandom two-liquid (NRTL), and universal quasichemical (UNIQUAC) activity coefficient models, which were found suitable for representing the VLE data. Proper agreements between experimental and calculated VLE data were obtained, which were then confirmed with consistency tests. The applicability of the novel VLE data was demonstrated during an investigation of an anhydrous ethanol purification column. Reduction of the concentration of acetal and other pollutants was examined and optimized in a flowsheet environment. The modeling results were verified in a laboratory with an experimental distillation column, confirming a correct agreement between the results. It must be highlighted that the developed method is suitable for the production of pharmacopeial quality anhydrous alcohol, based on reliable, verified VLE data. The results show the importance of accurate VLE data in critical compositions (low pollutant content); moreover, aiming at high product purity, experimental validation has paramount importance. The consistency between the three platforms (VLE and distillation experiments and flowsheet simulation) confirms the accuracy of the developed method.

3.
ACS Omega ; 5(25): 15136-15145, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32637786

ABSTRACT

There are different factors and indices to characterize the performance of a pervaporation membrane, but none of them gives information about their capabilities in the area of liquid separation compared to the most convenient alternative, which is distillation. Membrane flash index (MFLI) can be considered the first and only one that shows if the membrane is more efficient or not than distillation and quantifies this feature too. Therefore, the MFLI helps select the best separation alternative in the case of process design. In this study, the evaluation and capabilities of membrane flash index are comprehensively investigated in the cases of six aqueous mixtures: methyl alcohol-water, ethyl alcohol-water, isobutyl alcohol-water, tetrahydrofuran-water, N-butyl alcohol-water, and isopropanol-water. It must be concluded that the separation capacity of organophilic type membranes is remarkably lower than hydrophilic membranes in all cases of separation. The study of the MFLI is extended with the consideration of other binary interaction parameters like separation factor, permeation flux, selectivity, and pervaporation separation index (PSI) in order to find a descriptive relationship between them. For the same membrane material type, descriptive function can be determined between feed concentration and MFLI and PSI and separation factor, which can be used to calculate each other's value. On the basis of the indices and especially the MFLI, a significant help can be given to the process design engineer to select the right liquid separation alternative and, in the case of pervaporation, find the most appropriate membrane.

SELECTION OF CITATIONS
SEARCH DETAIL
...