Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Front Neurosci ; 18: 1420119, 2024.
Article in English | MEDLINE | ID: mdl-39161650

ABSTRACT

Spiking neural networks (SNNs) have garnered significant attention due to their notable energy efficiency. However, conventional SNNs rely on spike firing frequency to encode information, necessitating a fixed sampling time and leaving room for further optimization. This study presents a novel approach to reduce sampling time and conserve energy by extracting early prediction results from the intermediate layer of the network and integrating them with the final layer's predictions in a Bayesian fashion. Experimental evaluations conducted on image classification tasks using MNIST, CIFAR-10, and CIFAR-100 datasets demonstrate the efficacy of our proposed method when applied to VGGNets and ResNets models. Results indicate a substantial energy reduction of 38.8% in VGGNets and 48.0% in ResNets, illustrating the potential for achieving significant efficiency gains in spiking neural networks. These findings contribute to the ongoing research in enhancing the performance of SNNs, facilitating their deployment in resource-constrained environments. Our code is available on GitHub: https://github.com/hanebarla/BayesianSpikeFusion.

SELECTION OF CITATIONS
SEARCH DETAIL