Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 39(19): 7671-7, 2005 Oct 01.
Article in English | MEDLINE | ID: mdl-16245843

ABSTRACT

In search of an effective method for phytoremediation of wastewater contaminated with organic compounds, we investigated the application of an apoplastic expressional system that secretes useful bacterial enzymes from transgenic plants into hydroponic media through the addition of a targeting signal. We constructed transgenic Arabidopsis expressing the aromatic-cleaving extradiol dioxygenase (DbfB), which degrades 2,3-dihydroxybiphenyl (2,3-DHB), and transgenic tobacco expressing haloalkane dehalogenase (DhaA), which catalyzes hydrolytic dechlorination of 1-chlorobutane (1-CB). Although crude leaf extracts of transgenic plants expressing cytoplasm-targeted degradative enzymes showed higher activity than did those from transgenic plants expressing apoplast-targeted enzymes, the hydroponic media of the latter showed 23.2 times (DbfB) and 76.4 times (DhaA) higher activity than plants containing the cytoplasm-targeted enzymes. Addition of crystalline 2,3-DHB to 100 mL of the hydroponic medium of transgenic or wild-type seedlings revealed that only medium from the transgenic Arabidopsis expressing apoplast-targeted DbfB showed rapid ring cleavage of 2,3-DHB. Transgenic tobacco expressing apoplast-targeted DhaA also resulted in the accumulation of the dehalogenation product 1-butanol in the hydroponic medium and showed a higher tolerance to 1-CB than wild-type or transgenic plants expressing cytoplasm-targeted DhaA. These results demonstrate the usefulness of the apoplastic expression of bacterial recombinant proteins in phytoremediation.


Subject(s)
Actinomycetales/enzymology , Arabidopsis/genetics , Nicotiana/genetics , Plants, Genetically Modified/enzymology , Recombinant Proteins/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Xenobiotics/metabolism , Arabidopsis/enzymology , Arabidopsis/microbiology , Biodegradation, Environmental , Biphenyl Compounds/metabolism , Blotting, Western , Butanes/metabolism , Catechols/metabolism , DNA Primers , Genetic Vectors , Hydrolases/metabolism , Oxygenases/metabolism , Plants, Genetically Modified/microbiology , Nicotiana/enzymology , Nicotiana/microbiology , Toxicity Tests
2.
Appl Microbiol Biotechnol ; 62(1): 83-91, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12835925

ABSTRACT

Microbial dimethyl sulfide (DMS) conversion is thought to be involved in the global sulfur cycle. We isolated Pseudomonas putida strain DS1 from soil as a bacterium utilizing DMS as a sole sulfur source, and tried to elucidate the DMS conversion mechanism of strain DS1 at biochemical and genetic level. Strain DS1 oxidized DMS to dimethyl sulfone (DMSO(2)) via dimethyl sulfoxide, whereas the oxidation was repressed in the presence of sulfate, suggesting that a sulfate starvation response is involved in DMS utilization by strain DS1. Two of the five DMS-utilization-defective mutants isolated by transposon 5 (Tn 5) mutagenesis had a Tn 5 insertion in the ssuEADCBF operon, which has been reported to encode a two-component monooxygenase system (SsuED), an ABC-type transporter (SsuABC), and a small protein (SsuF), and also to play a key role in utilization of sulfonates and sulfate esters in another bacterium, P. putida strain S-313. Disruption of ssuD and SsuD enzymatic activity demonstrated that methanesulfonate is a metabolic intermediate of DMS and desulfonated by SsuD. Disruption of ssuC or ssuF also led to a DMS-utilization-defective phenotype. Another two mutants had a defect in a gene homologous to pa2354 from P. aeruginosa PAO1, which encodes a putative transcriptional regulator, while the remaining mutant had a defect in cysM encoding O-acetylserine (thiol)-lyase B.


Subject(s)
Genes, Bacterial , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Sulfides/metabolism , Base Sequence , Cloning, Molecular , Models, Genetic , Oxidation-Reduction , Phenotype , Sequence Analysis , Sulfates/metabolism
3.
Appl Microbiol Biotechnol ; 61(1): 44-54, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12658514

ABSTRACT

Phthalate is a metabolic intermediate of the pathway of fluorene (FN) degradation via angular dioxygenation. A gene cluster responsible for the conversion of phthalate to protocatechuate was cloned from the dibenzofuran (DF)- and FN-degrading bacterium Terrabacter sp. strain DBF63 and sequenced. The genes encoding seven catabolic enzymes, oxygenase large subunit of phthalate 3,4-dioxygenase (phtA1), oxygenase small subunit of phthalate 3,4-dioxygenase (phtA2), cis-3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase (phtB), [3Fe-4S] or [4Fe-4S] type of ferredoxin (phtA3), ferredoxin reductase (phtA4), 3,4-dihydroxyphthalate decarboxylase (phtC) and putative regulatory protein (phtR), were found in the upstream region of the angular dioxygenase gene (dbfA1A2), encoded in this order. Escherichia coli carrying phtA1A2BA3A4 genes converted phthalate to 3,4-dihydroxyphthalate, and the 3,4-dihydroxyphthalate decarboxylase activity by E. coli cells carrying phtC was finally detected with the introduction of a Shine-Dalgarno sequence in the upstream region of its initiation codon. Homology analysis on the upstream region of the pht gene cluster revealed that there was an insertion sequence (IS) (ISTesp2; ORF14 and its flanking region), part of which was almost 100% identical to the orf1 and its flanking region adjacent to the extradiol dioxygenase gene ( bphC1) involved in the DF degradation of Terrabacter sp. strain DPO360 [Schmid et al. (1997) J Bacteriol 179:53-62]. This suggests that ISTesp2 plays a role in the metabolism of aromatic compounds in Terrabacter sp. strains DBF63 and DPO360.


Subject(s)
Actinomycetales/enzymology , Genes, Bacterial , Multigene Family , Oxygenases/metabolism , Phthalic Acids/metabolism , Actinomycetales/genetics , Amino Acid Sequence , Base Sequence , DNA Transposable Elements/genetics , Models, Genetic , Models, Molecular , Molecular Sequence Data , Oxidoreductases/genetics , Oxygenases/chemistry , Oxygenases/genetics , Sequence Alignment , Substrate Specificity
4.
Appl Microbiol Biotechnol ; 58(2): 202-9, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11876413

ABSTRACT

Nineteen polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from environmental samples in Kuwait, Indonesia, Thailand, and Japan by enrichment with either naphthalene or phenanthrene as a sole carbon source. Sequence analyses of the 16-S rRNA gene indicated that at least seven genera (Ralstonia, Sphingomonas, Burkholderia, Pseudomonas, Comamonas, Flavobacterium, and Bacillus) were present in this collection. Determination of the ability of the isolates to use PAH and its presumed catabolic intermediates suggests that the isolates showed multiple phenotypes in terms of utilization and degradation pathways. The large subunit of the terminal oxygenase gene (phnAc) from Burkholderia sp. strain RP007 hybridized to 32% (6/19) of the isolates, whilst gene probing using the large subunit of terminal oxygenase gene (pahAc) from Pseudomonas putida strain OUS82 revealed no pahAc-like genes amongst the isolates. Using three degenerated primer sets (pPAH-F/NR700, AJ025/26, and RieskeF/R), targeting a conserved region with the genes encoding the large subunit of terminal oxygenase successfully amplified material from 6 additional PAH-degrading isolates. Sequence analyses showed that the large subunit of terminal oxygenase in 4 isolates was highly homologous to the large subunit of naphthalene dioxygenase gene from Ralstonia sp. strain U2. However, we could not obtain any information on the oxygenase system involved in the naphthalene and/or phenathrene degradation by 7 other strains. These results suggest that PAH-degrading bacteria are diverse, and that there are still many unidentified PAH-degrading bacteria.


Subject(s)
Bacteria/classification , Bacteria/genetics , Environmental Microbiology , Genetic Variation , Polycyclic Aromatic Hydrocarbons/metabolism , Asia , Bacteria/isolation & purification , Bacteria/metabolism , Biodegradation, Environmental , Blotting, Southern , Culture Media/chemistry , Genes, rRNA , Genotype , Molecular Sequence Data , Oxygenases/genetics , Phenotype , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Appl Microbiol Biotechnol ; 56(5-6): 788-95, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11601631

ABSTRACT

A method for bioremediation of chlorinated dibenzo-p-dioxins (CDDs) and dibenzofurans (CDFs) by a carbazole-utilizing bacterium, Pseudomonas sp. strain CA10, was developed. CA10 cells transferred to carbon- and nitrogen-free mineral medium supplemented with 1 mg carbazole (CAR)/ml grew rapidly during the first 2 days; and the cells at the end of this rapid growth period showed the highest 2,3-dichlorodibenzo-p-dioxin (2,3-Cl2DD)-degrading activity. The CA10 cells pregrown for 2 days efficiently degraded 2,3-Cl2DD in aqueous solution at either 1 ppm or 10 ppm. The effect of inoculum density on the efficiency of 2,3-Cl2DD degradation was investigated in a soil slurry microcosm [ratio of soil:water = 1:5 (w/v)]. The results showed that a single inoculation with CA10 cells at densities of 10(7) CFU/g soil and 10(9) CFU/g soil degraded 46% and 80% of 2,3-Cl2DD, respectively, during the 7-day incubation. The rate of degradation of each CDD congener, 2-ClDD, 2,3-Cl2DD, and 1,2,3-Cl3DD (1 ppm each) by strain CA10 in the soil slurry system was not significantly influenced by the coexistence of the other congeners. Using this soil slurry system, we tried an experimental bioremediation of the actual dioxin-contaminated soil, which contained mainly tetra- to octochlorinated dioxins. Although the degradation rate of total CDD and CDF congeners by a single inoculation with CA10 cells was 8.3% after a 7-day incubation, it was shown that strain CA10 had a potential to degrade tetra- to hepta-chlorinated congeners including the most toxic compound, 2,3,7,8-tetrachlorinated dibenzo-p-dioxin.


Subject(s)
Benzofurans/metabolism , Carbazoles/metabolism , Dioxins/metabolism , Pseudomonas/growth & development , Soil Pollutants/metabolism , Biodegradation, Environmental , Biotechnology/methods , Culture Media , Pseudomonas/metabolism
6.
FEMS Microbiol Lett ; 202(1): 51-7, 2001 Aug 07.
Article in English | MEDLINE | ID: mdl-11506907

ABSTRACT

The fluorogenic probe assay, competitive polymerase chain reaction (PCR) and co-extraction with internal standard cells were combined to develop a rapid, sensitive, and accurate quantification method for the copy number of a target carbazole 1,9a-dioxygenase gene (carAa) and the cell number of Pseudomonas sp. strain CA10. The internal standard DNA was modified by replacement of a 20-bp long region with one for binding a specific probe in fluorogenic PCR (TaqMan). The resultant DNA fragment was similar to the corresponding region of the intact carAa gene in terms of G+C content. When used as a competitor in the PCR reaction, the internal standard DNA was distinguishable from the target carAa gene by two specific fluorogenic probes with different fluorescence labels, and was automatically detected in a single tube using the ABI7700 sequence detection system. To minimize variations in the efficiency of cell lysis and DNA extraction between the samples, the co-extraction method was combined. A mini-transposon was used to introduce competitor DNA into the genome of other pseudomonads, and the resultant construct was used as the standard cell. After the addition of a fixed amount of the internal standard cells to soil samples, total DNA was extracted (co-extraction). Using this method, the copy number of the carAa gene and the cell number of strain CA10 in soil samples could be quantified rapidly.


Subject(s)
Bacterial Proteins , Dioxygenases , Oxygenases/genetics , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Pseudomonas/genetics , Pseudomonas/isolation & purification , Soil Microbiology , Binding, Competitive , DNA Primers/genetics , DNA Probes/genetics , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Electrophoresis, Agar Gel , Fluorescent Dyes , Pseudomonas/enzymology , Reference Standards , Sensitivity and Specificity
7.
Appl Environ Microbiol ; 67(8): 3610-7, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11472938

ABSTRACT

Two kinds of bacteria having different-structured angular dioxygenases-a dibenzofuran (DF)-utilizing bacterium, Terrabacter sp. strain DBF63, and a carbazole (CAR)-utilizing bacterium, Pseudomonas sp. strain CA10-were investigated for their ability to degrade some chlorinated dibenzofurans (CDFs) and chlorinated dibenzo-p-dioxins (CDDs) (or, together, CDF/Ds) using either wild-type strains or recombinant Escherichia coli strains. First, it was shown that CAR 1,9a-dioxygenase (CARDO) catalyzed angular dioxygenation of all mono- to triCDF/Ds investigated in this study, but DF 4,4a-dioxygenase (DFDO) did not degrade 2,7-diCDD. Secondly, degradation of CDF/Ds by the sets of three enzymes (angular dioxygenase, extradiol dioxygenase, and meta-cleavage compound hydrolase) was examined, showing that these enzymes in both strains were able to convert 2-CDF to 5-chlorosalicylic acid but not other tested substrates to the corresponding chlorosalicylic acid (CSA) or chlorocatechol (CC). Finally, we tested the potential of both wild-type strains for cooxidation of CDF/Ds and demonstrated that both strains degraded 2-CDF, 2-CDD, and 2,3-diCDD to the corresponding CSA and CC. We investigated the sites for the attack of angular dioxygenases in each CDF/D congener, suggesting the possibility that the angular dioxygenation of 2-CDF, 2-CDD, 2,3-diCDD, and 1,2,3-triCDD (10 ppm each) by both DFDO and CARDO occurred mainly on the nonsubstituted aromatic nuclei.


Subject(s)
Actinomycetales/enzymology , Bacterial Proteins , Benzofurans/metabolism , Dioxins/metabolism , Dioxygenases , Oxygenases/metabolism , Pseudomonas/enzymology , Actinomycetales/genetics , Benzofurans/chemistry , Biodegradation, Environmental , Chlorine/chemistry , Dioxins/chemistry , Escherichia coli/enzymology , Escherichia coli/genetics , Gas Chromatography-Mass Spectrometry , Oxygenases/genetics
8.
J Bacteriol ; 183(12): 3663-79, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11371531

ABSTRACT

The nucleotide sequences of the 27,939-bp-long upstream and 9,448-bp-long downstream regions of the carAaAaBaBbCAc(ORF7)Ad genes of carbazole-degrading Pseudomonas sp. strain CA10 were determined. Thirty-two open reading frames (ORFs) were identified, and the car gene cluster was consequently revealed to consist of 10 genes (carAaAaBaBbCAcAdDFE) encoding the enzymes for the three-step conversion of carbazole to anthranilate and the degradation of 2-hydroxypenta-2,4-dienoate. The high identities (68 to 83%) with the enzymes involved in 3-(3-hydroxyphenyl)propionic acid degradation were observed only for CarFE. This observation, together with the fact that two ORFs are inserted between carD and carFE, makes it quite likely that the carFE genes were recruited from another locus. In the 21-kb region upstream from carAa, aromatic-ring-hydroxylating dioxygenase genes (ORF26, ORF27, and ORF28) were found. Inductive expression in carbazole-grown cells and the results of homology searching indicate that these genes encode the anthranilate 1,2-dioxygenase involved in carbazole degradation. Therefore, these ORFs were designated antABC. Four homologous insertion sequences, IS5car1 to IS5car4, were identified in the neighboring regions of car and ant genes. IS5car2 and IS5car3 constituted the putative composite transposon containing antABC. One-ended transposition of IS5car2 together with the 5' portion of antA into the region immediately upstream of carAa had resulted in the formation of IS5car1 and ORF9. In addition to the insertion sequence-dependent recombination, gene duplications and presumed gene fusion were observed. In conclusion, through the above gene rearrangement, the novel genetic structure of the car gene cluster has been constructed. In addition, it was also revealed that the car and ant gene clusters are located on the megaplasmid pCAR1.


Subject(s)
Bacterial Proteins/genetics , Carbazoles/metabolism , Oxygenases/genetics , Pseudomonas/enzymology , Amino Acid Sequence , Bacterial Proteins/metabolism , Base Composition , Biodegradation, Environmental , Blotting, Northern , Blotting, Southern , DNA Transposable Elements , Molecular Sequence Data , Open Reading Frames , Oxygenases/metabolism , Physical Chromosome Mapping , Pseudomonas/genetics , Pseudomonas/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Transposases/genetics
9.
Biochem Biophys Res Commun ; 283(1): 195-204, 2001 Apr 27.
Article in English | MEDLINE | ID: mdl-11322788

ABSTRACT

A gram-positive bacterium Terrabacter sp. strain DBF63 is able to degrade dibenzofuran (DF) via initial dioxygenation by a novel angular dioxygenase. The dbfA1 and dbfA2 genes, which encode the large and small subunits of the dibenzofuran 4,4a-dioxygenase (DFDO), respectively, were isolated by a polymerase chain reaction-based method. DbfA1 and DbfA2 showed moderate homology to the large and small subunits of other ring-hydroxylating dioxygenases (less than 40%), respectively, and some motifs such as the Fe(II) binding site and the [2Fe-2S] cluster ligands were conserved in DbfA1. DFDO activity was confirmed in Escherichia coli cells containing the cloned dbfA1 and dbfA2 genes with the complementation of nonspecific ferredoxin and ferredoxin reductase component of E. coli. Under this condition, these cells exhibited angular dioxygenation of DF and dibenzo-p-dioxin, and monooxygenation of fluorene, but not angular dioxygenation of carbazole, xanthene, and phenoxathiin. Phylogenetic analysis revealed that DbfA1 formed a branch with recently reported large subunits of polycyclic aromatic hydrocarbon (PAH) dioxygenase from gram-positive bacteria but did not cluster with that of other angular dioxygenases, i.e., DxnA1 from Sphingomonas sp. strain RW1 [Armengaud, J., Happe, B., and Timmis, K. N. J. Bacteriol. 180, 3954-3966, 1998] and CarAa from Pseudomonas sp. strain CA10 [Sato, S., Nam, J.-W., Kasuga, K., Nojiri, H., Yamane, H., and Omori, T. J. Bacteriol. 179, 4850-4858, 1997].


Subject(s)
Benzofurans/metabolism , Dioxygenases , Gram-Positive Bacteria/enzymology , Gram-Positive Bacteria/genetics , Oxygenases/genetics , Protein Subunits , Cloning, Molecular , Genes, Regulator , Molecular Sequence Data , Open Reading Frames/genetics , Oxidoreductases/genetics , Oxygenases/metabolism , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Substrate Specificity
10.
Biosci Biotechnol Biochem ; 65(2): 254-63, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11302156

ABSTRACT

Batie et al. [Chemistry and Biochemistry of Flavoenzymes, 3, 543-556 (1991)] proposed a classification system for ring-hydroxylating oxygenases in which the oxygenases are grouped into three classes in terms of the number of constituent components and the nature of the redox centers. But in recent years, many ring-hydroxylating oxygenases have been newly identified and characterized, and found difficult to classify into these three classes. Typical examples are carbazole 1,9a-dioxygenase and 2-oxo-1,2-dihydroquinoline 8-monooxygenase, which have been classified into class III and class IB, respectively, from biochemical characteristics. However, a phylogenetic study showed that the terminal oxygenases of both are closely related to class IA. Because this discrepancy derived from counting all the components together, here we proposed a new scheme based on the homology of the amino acid sequences of the alpha subunits of the terminal oxygenase components. This new scheme strongly reflects the actual phylogenetic affiliation of the terminal oxygenase component. By comparing their sequences pairwise using the CLUSTAL W program, 54 oxygenase components were classified into 4 groups (groups I, II, III, and IV). While group I contains broad-range oxygenases sharing low homology, groups II, III, and IV contain some typical oxygenases: benzoate/toluate dioxygenases for group II, naphthalene/polycyclic aromatic hydrocarbon dioxygenases for group III, and benzene/toluene/biphenyl dioxygenases for group IV. Our new scheme is simple and powerful, since an oxygenase component can be nearly automatically grouped when the DNA sequence is available, and it fits very well with the phylogenetic affiliation.


Subject(s)
Oxygenases/classification , Oxygenases/metabolism , Amino Acid Sequence , Bacteria/enzymology , Bacteria/genetics , Hydroxylation , Molecular Sequence Data , Oxygenases/chemistry , Oxygenases/genetics , Phylogeny , Protein Subunits , Sequence Alignment , Sequence Homology, Amino Acid
11.
Appl Microbiol Biotechnol ; 54(3): 341-7, 2000 Sep.
Article in English | MEDLINE | ID: mdl-11030570

ABSTRACT

A CH3OH-utilizing bacterium that has the ability to produce extracellular polysaccharide (EPS) was isolated from a soil sample, and was identified as the obligate methylotroph Methylobacillus sp. strain 12S on the basis of its 16S rDNA sequence and growth-substrate specificity. The EPS produced by strain 12S was purified and the sugar composition was analysed by GC-MS and HPLC to reveal that the EPS was a heteropolymer composed of glucosyl, galactosyl, and mannosyl residues in the molar ratio 3:1:1. In order to produce mono- and/or oligosaccharides by single-step fermentation from CH3OH, stain 12S was mutagenized by transposon 5. Among eleven EPS-deficient mutants, three strains were found to accumulate significant amounts of reducing sugars in the media. The amounts of the reducing sugars produced by the mutants ( > ca. 700 mg glucose equivalent/l) were > 11-22 times higher than those produced by the wild-type strain (

Subject(s)
DNA Transposable Elements , Disaccharides/biosynthesis , Methanol/metabolism , Methylobacillus/metabolism , Monosaccharides/biosynthesis , Polysaccharides, Bacterial/biosynthesis , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Glucose/biosynthesis , Methylobacillus/classification , Methylobacillus/genetics , Methylobacillus/isolation & purification , Mutation , Oxidation-Reduction , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/isolation & purification , Soil Microbiology , Tetroses/biosynthesis
12.
FEMS Microbiol Lett ; 191(1): 115-21, 2000 Oct 01.
Article in English | MEDLINE | ID: mdl-11004408

ABSTRACT

Sphingomonas sp. strain P2, which is capable of utilizing phenanthrene as a sole carbon and energy source, was isolated from petroleum-contaminated soil in Thailand. Gas chromatography-mass spectrometry and (1)H and (13)C nuclear magnetic resonance analyses revealed two novel metabolites from the phenanthrene degradation pathway. One was identified as 5,6-benzocoumarin, which was derived by dioxygenation at the 1- and 2-positions of phenanthrene, and the other was determined to be 1,5-dihydroxy-2-naphthoic acid. Other metabolites from phenanthrene degradation were identified as 7, 8-benzocoumarin, 1-hydroxy-2-naphthoic acid and coumarin. From these results, it is suggested that strain P2 can degrade phenanthrene via dioxygenation at both 1,2- and 3,4-positions followed by meta-cleavage.


Subject(s)
Phenanthrenes/metabolism , Sphingomonas/metabolism , Biodegradation, Environmental , Coumarins , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Sphingomonas/growth & development
13.
Appl Environ Microbiol ; 62(12): 4471-7, 1996 Dec.
Article in English | MEDLINE | ID: mdl-8953719

ABSTRACT

We obtained the DNA fragments encoding 2-hydroxy-6-oxo-7-methylocta-2,4-dienoic acid (HOMODA) hydrolase in the cumene (isopropylbenzene) degrader Pseudomonas fluorescens strain IP01 via PCR using two synthesized oligonucleotides corresponding to the conserved regions within known meta-cleavage compound hydrolases. Following colony hybridization using the amplified DNA as a probe, a 4.5-kb HindIII fragment was isolated from P. fluorescens IP01. After determining the nucleotide sequence of this fragment, three open reading frames (ORF11 [cumH], ORF12 [cumD], and ORF13) were identified. The deduced amino acid sequence of ORF12 showed homology with meta-cleavage compound hydrolases encoded by the tod, dmp, xyl, and bph operons. Although the product of ORF12 was found to exhibit HOMODA and 2-hydroxy-6-oxohepta-2,4-dienoic acid (HOHDA) hydrolase activities, it did not exhibit 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase activity. The deduced amino acid sequence of ORF11 showed 40.4% homology with the sequence of todX in Pseudomonas putida F1 (Y. Wang, M. Ralings, D. T. Gibson, D. Labbé, H. Bergeron, R. Brousseau, and P. C. K. Lau, Mol. Gen. Genet. 246:570-579, 1995). The nucleotide sequence of ORF13 and its flanking region showed strong homology (91.0%) with IS52 from Pseudomonas savastanoi (Y. Yamada, P.-D. Lee, and T. Kosuge, Proc. Natl. Acad. Sci. USA 83:8263-8267, 1982). By characterization of cumH and cumD, the entire cum gene cluster from the cumene-degrader P. fluorescens IP01 (cumA1A2A3A4BCEGFHD) has been identified.


Subject(s)
Benzene Derivatives/metabolism , Genes, Bacterial , Pseudomonas/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Molecular Sequence Data , Open Reading Frames
SELECTION OF CITATIONS
SEARCH DETAIL
...