Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Breed ; 42(9): 50, 2022 Sep.
Article in English | MEDLINE | ID: mdl-37313419

ABSTRACT

Bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC) represents one of the most serious diseases affecting potato cultivation. The development of BW-resistant cultivars represents the most efficient strategy to control this disease. The resistance-related quantitative trait loci (QTLs) in plants against different RSSC strains have not been studied extensively. Therefore, we performed QTL analysis for evaluating BW resistance using a diploid population derived from Solanum phureja, S. chacoense, and S. tuberosum. Plants cultivated in vitro were inoculated with different strains (phylotype I/biovar 3, phylotype I/biovar 4, and phylotype IV/biovar 2A) and incubated at 24 °C or 28 °C under controlled conditions. Composite interval mapping was performed for the disease indexes using a resistant parent-derived map and a susceptible parent-derived map consisting of single-nucleotide polymorphism markers. We identified five major and five minor resistance QTLs on potato chromosomes 1, 3, 5, 6, 7, 10, and 11. The major QTLs PBWR-3 and PBWR-7 conferred stable resistance against Ralstonia pseudosolanacearum (phylotype I) and Ralstonia syzygii (phylotype IV), whereas PBWR-6b was a strain-specific major resistance QTL against phylotype I/biovar 3 and was more effective at a lower temperature. Therefore, we suggest that broad-spectrum QTLs and strain-specific QTLs can be combined to develop the most effective BW-resistant cultivars for specific areas. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01321-9.

2.
Breed Sci ; 69(4): 592-600, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31988623

ABSTRACT

Ralstonia solanacearum causes bacterial wilt, a soil-borne disease and one of the most important maladies of potato and other Solanaceae crops. We analyzed the resistance of a potato clone to bacterial wilt by quantitative trait locus (QTL) analysis. A resistant diploid potato clone 10-03-30 was crossed with a susceptible diploid clone F1-1 to generate a diploid, two-way pseudo-testcross F1 population comprised of 94 genotypes. Dense linkage maps, containing 4,139 single nucleotide polymorphism markers with an average distance of 0.6 and 0.3 cM between markers, were constructed for both parents. The resistance level was evaluated by in vitro inoculation test with R. solanacearum (phylotype I/biovar 4/race 1). Five QTLs (qBWR-1 to -5) were identified on potato chromosomes 1, 3, 7, 10, and 11, and they explained 9.3-18.4% of the phenotypic variance. The resistant parent had resistant alleles in qBWR-2, qBWR-3, and qBWR-4 and susceptible alleles in qBWR-1 and qBWR-5. Accumulation of the resistant alleles in all five QTLs increased the level of resistance compared with that of the resistant parent. This is the first study to identify novel QTLs for bacterial wilt resistance in potato by using genome-wide markers.

SELECTION OF CITATIONS
SEARCH DETAIL
...