Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 3: e04499, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25432022

ABSTRACT

Understanding the neural basis of consciousness is fundamental to neuroscience research. Disruptions in cortico-cortical connectivity have been suggested as a primary mechanism of unconsciousness. By using a novel combination of positron emission tomography and functional magnetic resonance imaging, we studied anesthesia-induced unconsciousness and recovery using the α2-agonist dexmedetomidine. During unconsciousness, cerebral metabolic rate of glucose and cerebral blood flow were preferentially decreased in the thalamus, the Default Mode Network (DMN), and the bilateral Frontoparietal Networks (FPNs). Cortico-cortical functional connectivity within the DMN and FPNs was preserved. However, DMN thalamo-cortical functional connectivity was disrupted. Recovery from this state was associated with sustained reduction in cerebral blood flow and restored DMN thalamo-cortical functional connectivity. We report that loss of thalamo-cortical functional connectivity is sufficient to produce unconsciousness.


Subject(s)
Cerebral Cortex/drug effects , Nerve Net/drug effects , Neural Pathways/drug effects , Thalamus/drug effects , Unconsciousness/chemically induced , Adolescent , Adult , Analgesics, Non-Narcotic/pharmacology , Brain Mapping , Cerebral Cortex/blood supply , Cerebral Cortex/physiology , Consciousness/physiology , Dexmedetomidine/pharmacology , Electroencephalography , Female , Humans , Male , Nerve Net/blood supply , Nerve Net/physiology , Neural Pathways/blood supply , Neural Pathways/physiology , Thalamus/blood supply , Thalamus/physiology , Unconsciousness/physiopathology
2.
Anesthesiology ; 121(5): 978-89, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25187999

ABSTRACT

BACKGROUND: Electroencephalogram patterns observed during sedation with dexmedetomidine appear similar to those observed during general anesthesia with propofol. This is evident with the occurrence of slow (0.1 to 1 Hz), delta (1 to 4 Hz), propofol-induced alpha (8 to 12 Hz), and dexmedetomidine-induced spindle (12 to 16 Hz) oscillations. However, these drugs have different molecular mechanisms and behavioral properties and are likely accompanied by distinguishing neural circuit dynamics. METHODS: The authors measured 64-channel electroencephalogram under dexmedetomidine (n = 9) and propofol (n = 8) in healthy volunteers, 18 to 36 yr of age. The authors administered dexmedetomidine with a 1-µg/kg loading bolus over 10 min, followed by a 0.7 µg kg h infusion. For propofol, the authors used a computer-controlled infusion to target the effect-site concentration gradually from 0 to 5 µg/ml. Volunteers listened to auditory stimuli and responded by button press to determine unconsciousness. The authors analyzed the electroencephalogram using multitaper spectral and coherence analysis. RESULTS: Dexmedetomidine was characterized by spindles with maximum power and coherence at approximately 13 Hz (mean ± SD; power, -10.8 ± 3.6 dB; coherence, 0.8 ± 0.08), whereas propofol was characterized with frontal alpha oscillations with peak frequency at approximately 11 Hz (power, 1.1 ± 4.5 dB; coherence, 0.9 ± 0.05). Notably, slow oscillation power during a general anesthetic state under propofol (power, 13.2 ± 2.4 dB) was much larger than during sedative states under both propofol (power, -2.5 ± 3.5 dB) and dexmedetomidine (power, -0.4 ± 3.1 dB). CONCLUSION: The results indicate that dexmedetomidine and propofol place patients into different brain states and suggest that propofol enables a deeper state of unconsciousness by inducing large-amplitude slow oscillations that produce prolonged states of neuronal silence.


Subject(s)
Anesthetics, Intravenous/pharmacology , Dexmedetomidine/pharmacology , Electroencephalography/drug effects , Hypnotics and Sedatives/pharmacology , Propofol/pharmacology , Adolescent , Adult , Behavior/drug effects , Data Interpretation, Statistical , Electroencephalography/statistics & numerical data , Female , Humans , Male , Unconsciousness/chemically induced , Unconsciousness/physiopathology , Young Adult
3.
Proc Natl Acad Sci U S A ; 110(12): E1142-51, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23487781

ABSTRACT

Unconsciousness is a fundamental component of general anesthesia (GA), but anesthesiologists have no reliable ways to be certain that a patient is unconscious. To develop EEG signatures that track loss and recovery of consciousness under GA, we recorded high-density EEGs in humans during gradual induction of and emergence from unconsciousness with propofol. The subjects executed an auditory task at 4-s intervals consisting of interleaved verbal and click stimuli to identify loss and recovery of consciousness. During induction, subjects lost responsiveness to the less salient clicks before losing responsiveness to the more salient verbal stimuli; during emergence they recovered responsiveness to the verbal stimuli before recovering responsiveness to the clicks. The median frequency and bandwidth of the frontal EEG power tracked the probability of response to the verbal stimuli during the transitions in consciousness. Loss of consciousness was marked simultaneously by an increase in low-frequency EEG power (<1 Hz), the loss of spatially coherent occipital alpha oscillations (8-12 Hz), and the appearance of spatially coherent frontal alpha oscillations. These dynamics reversed with recovery of consciousness. The low-frequency phase modulated alpha amplitude in two distinct patterns. During profound unconsciousness, alpha amplitudes were maximal at low-frequency peaks, whereas during the transition into and out of unconsciousness, alpha amplitudes were maximal at low-frequency nadirs. This latter phase-amplitude relationship predicted recovery of consciousness. Our results provide insights into the mechanisms of propofol-induced unconsciousness, establish EEG signatures of this brain state that track transitions in consciousness precisely, and suggest strategies for monitoring the brain activity of patients receiving GA.


Subject(s)
Consciousness/drug effects , Electroencephalography , Frontal Lobe/physiopathology , Hypnotics and Sedatives/administration & dosage , Propofol/administration & dosage , Unconsciousness/physiopathology , Adolescent , Adult , Female , Humans , Male , Speech Perception/drug effects , Time Factors , Unconsciousness/chemically induced
4.
Proc Natl Acad Sci U S A ; 108(21): 8832-7, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21555565

ABSTRACT

Time and frequency domain analyses of scalp EEG recordings are widely used to track changes in brain states under general anesthesia. Although these analyses have suggested that different spatial patterns are associated with changes in the state of general anesthesia, the extent to which these patterns are spatially coordinated has not been systematically characterized. Global coherence, the ratio of the largest eigenvalue to the sum of the eigenvalues of the cross-spectral matrix at a given frequency and time, has been used to analyze the spatiotemporal dynamics of multivariate time-series. Using 64-lead EEG recorded from human subjects receiving computer-controlled infusions of the anesthetic propofol, we used surface Laplacian referencing combined with spectral and global coherence analyses to track the spatiotemporal dynamics of the brain's anesthetic state. During unconsciousness the spectrograms in the frontal leads showed increasing α (8-12 Hz) and δ power (0-4 Hz) and in the occipital leads δ power greater than α power. The global coherence detected strong coordinated α activity in the occipital leads in the awake state that shifted to the frontal leads during unconsciousness. It revealed a lack of coordinated δ activity during both the awake and unconscious states. Although strong frontal power during general anesthesia-induced unconsciousness--termed anteriorization--is well known, its possible association with strong α range global coherence suggests highly coordinated spatial activity. Our findings suggest that combined spectral and global coherence analyses may offer a new approach to tracking brain states under general anesthesia.


Subject(s)
Anesthesia, General , Brain Mapping , Electroencephalography/methods , Unconsciousness , Brain/physiology , Humans , Methods , Models, Theoretical , Unconsciousness/chemically induced , Unconsciousness/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...