Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroeng Rehabil ; 17(1): 133, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33032615

ABSTRACT

BACKGROUND: Motor hand skill and associated dexterity is important for meeting the challenges of daily activity and an important resource post-stroke. In this context, the present study investigated the finger movements of right-handed subjects during tactile manipulation of a cuboid, a prototypical task underlying tactile exploration. During one motor act, the thumb and fingers of one hand surround the cuboid in a continuous and regular manner. While the object is moved by the guiding thumb, the opposed supporting fingers are replaced once they reach their joint limits by free fingers, a mechanism termed finger gaiting. METHODS: For both hands of 22 subjects, we acquired the time series of consecutive manipulations of a cuboid at a frequency of 1 Hz, using a digital data glove consisting of 29 sensors. Using principle component analysis, we decomposed the short action into motor patterns related to successive manipulations of the cuboid. The components purport to represent changing grasp configurations involving the stabilizing fingers and guiding thumb. The temporal features of the components permits testing whether the distinct configurations occur at the frequency of 1 Hz, i.e. within the time window of 1 s, and, thus, taxonomic classification of the manipulation as finger gaiting. RESULTS: The fraction of variance described by the principal components indicated that three components described the salient features of the single motor acts for each hand. Striking in the finger patterns was the prominent and varying roles of the MCP and PIP joints of the fingers, and the CMC joint of the thumb. An important aspect of the three components was their representation of distinct finger configurations within the same motor act. Principal component and graph theory analysis confirmed modular, functionally synchronous action of the involved joints. The computation of finger trajectories in one subject illustrated the workspace of the task, which differed for the right and left hands. CONCLUSION: In this task one complex motor act of 1 s duration could be described by three elementary and hierarchically ordered grasp configurations occurring at the prescribed frequency of 1 Hz. Therefore, these configurations represent finger gaiting, described until now only in artificial systems, as the principal mechanism underlying this prototypical task. TRIAL REGISTRATION: clinicaltrials.gov, NCT02865642 , registered 12 August 2016.


Subject(s)
Fingers/physiology , Motor Skills/physiology , Touch/physiology , Adult , Aged , Aged, 80 and over , Female , Healthy Volunteers , Humans , Male , Middle Aged
2.
Front Neurol ; 9: 737, 2018.
Article in English | MEDLINE | ID: mdl-30254601

ABSTRACT

Objectives: To investigate the relationship between imaging features derived from lesion loads and 3 month clinical assessments in ischemic stroke patients. To support clinically implementable predictive modeling with information from lesion-load features. Methods: A retrospective cohort of ischemic stroke patients was studied. The dataset was dichotomized based on revascularization treatment outcome (TICI score). Three lesion delineations were derived from magnetic resonance imaging in each group: two clinically implementable (threshold based and fully automatic prediction) and 90-day follow-up as final groundtruth. Lesion load imaging features were created through overlay of the lesion delineations on a histological brain atlas, and were correlated with the clinical assessment (NIHSS). Significance of the correlations was assessed by constructing confidence intervals using bootstrap sampling. Results: Overall, high correlations between lesion loads and clinical score were observed (up to 0.859). Delineations derived from acute imaging yielded on average somewhat lower correlations than delineations derived from 90-day follow-up imaging. Correlations suggest that both total lesion volume and corticospinal tract lesion load are associated with functional outcome, and in addition highlight other potential areas associated with poor clinical outcome, including the primary somatosensory cortex BA3a. Fully automatic prediction was comparable to ADC threshold-based delineation on the successfully treated cohort and superior to the Tmax threshold-based delineation in the unsuccessfully treated cohort. Conclusions: The confirmation of established predictors for stroke outcome (e.g., corticospinal tract integrity and total lesion volume) gives support to the proposed methodology-relating acute lesion loads to 3 month outcome assessments by way of correlation. Furthermore, the preliminary results indicate an association of further brain regions and structures with three month NIHSS outcome assessments. Hence, prediction models might observe an increased accuracy when incorporating regional (instead of global) lesion loads. Also, the results lend support to the clinical utilization of the automatically predicted volumes from FASTER, rather than the simpler DWI and PWI lesion delineations.

3.
PLoS One ; 11(11): e0165302, 2016.
Article in English | MEDLINE | ID: mdl-27806121

ABSTRACT

OBJECTIVE: Comparison of a fully-automated segmentation method that uses compartmental volume information to a semi-automatic user-guided and FDA-approved segmentation technique. METHODS: Nineteen patients with a recently diagnosed and histologically confirmed glioblastoma (GBM) were included and MR images were acquired with a 1.5 T MR scanner. Manual segmentation for volumetric analyses was performed using the open source software 3D Slicer version 4.2.2.3 (www.slicer.org). Semi-automatic segmentation was done by four independent neurosurgeons and neuroradiologists using the computer-assisted segmentation tool SmartBrush® (referred to as SB), a semi-automatic user-guided and FDA-approved tumor-outlining program that uses contour expansion. Fully automatic segmentations were performed with the Brain Tumor Image Analysis (BraTumIA, referred to as BT) software. We compared manual (ground truth, referred to as GT), computer-assisted (SB) and fully-automated (BT) segmentations with regard to: (1) products of two maximum diameters for 2D measurements, (2) the Dice coefficient, (3) the positive predictive value, (4) the sensitivity and (5) the volume error. RESULTS: Segmentations by the four expert raters resulted in a mean Dice coefficient between 0.72 and 0.77 using SB. BT achieved a mean Dice coefficient of 0.68. Significant differences were found for intermodal (BT vs. SB) and for intramodal (four SB expert raters) performances. The BT and SB segmentations of the contrast-enhancing volumes achieved a high correlation with the GT. Pearson correlation was 0.8 for BT; however, there were a few discrepancies between raters (BT and SB 1 only). Additional non-enhancing tumor tissue extending the SB volumes was found with BT in 16/19 cases. The clinically motivated sum of products of diameters measure (SPD) revealed neither significant intermodal nor intramodal variations. The analysis time for the four expert raters was faster (1 minute and 47 seconds to 3 minutes and 39 seconds) than with BT (5 minutes). CONCLUSION: BT and SB provide comparable segmentation results in a clinical setting. SB provided similar SPD measures to BT and GT, but differed in the volume analysis in one of the four clinical raters. A major strength of BT may its independence from human interactions, it can thus be employed to handle large datasets and to associate tumor volumes with clinical and/or molecular datasets ("-omics") as well as for clinical analyses of brain tumor compartment volumes as baseline outcome parameters. Due to its multi-compartment segmentation it may provide information about GBM subcompartment compositions that may be subjected to clinical studies to investigate the delineation of the target volumes for adjuvant therapies in the future.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Image Processing, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Adult , Aged , Artificial Intelligence , Brain Neoplasms/diagnostic imaging , Female , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Imaging/instrumentation , Male , Middle Aged , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...