Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767374

ABSTRACT

The neuromodulatory effects of focused ultrasound (FUS) have been demonstrated in animal models, and FUS has been used successfully to treat movement and psychiatric disorders in humans. However, despite the success of FUS, the mechanism underlying its effects on neurons remains poorly understood, making treatment optimization by tuning FUS parameters difficult. To address this gap in knowledge, we studied human neurons in vitro using neurons cultured from human-induced pluripotent stem cells (HiPSCs). Using HiPSCs allows for the study of human-specific neuronal behaviors in both physiologic and pathologic states. This report presents a protocol for using a high-throughput system that enables the monitoring and quantification of the neuromodulatory effects of FUS on HiPSC neurons. By varying the FUS parameters and manipulating the HiPSC neurons through pharmaceutical and genetic modifications, researchers can evaluate the neural responses and elucidate the neuro-modulatory effects of FUS on HiPSC neurons. This research could have significant implications for the development of safe and effective FUS-based therapies for a range of neurological and psychiatric disorders.


Subject(s)
Induced Pluripotent Stem Cells , Microelectrodes , Neurons , Humans , Neurons/physiology , Neurons/cytology , Induced Pluripotent Stem Cells/cytology , Ultrasonic Waves
2.
J Neurosci Methods ; 407: 110127, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615721

ABSTRACT

BACKGROUND: Human induced pluripotent stem cell (hiPSC)- derived neurons offer the possibility of studying human-specific neuronal behaviors in physiologic and pathologic states in vitro. It is unclear whether cultured neurons can achieve the fundamental network behaviors required to process information in the brain. Investigating neuronal oscillations and their interactions, as occurs in cross-frequency coupling (CFC), addresses this question. NEW METHODS: We examined whether networks of two-dimensional (2D) cultured hiPSC-derived cortical neurons grown with hiPSC-derived astrocytes on microelectrode array plates recapitulate the CFC that is present in vivo. We employed the modulation index method for detecting phase-amplitude coupling (PAC) and used offline spike sorting to analyze the contribution of single neuron spiking to network behavior. RESULTS: We found that PAC is present, the degree of PAC is specific to network structure, and it is modulated by external stimulation with bicuculline administration. Modulation of PAC is not driven by single neurons, but by network-level interactions. COMPARISON WITH EXISTING METHODS: PAC has been demonstrated in multiple regions of the human cortex as well as in organoids. This is the first report of analysis demonstrating the presence of coupling in 2D cultures. CONCLUSION: CFC in the form of PAC analysis explores communication and integration between groups of neurons and dynamical changes across networks. In vitro PAC analysis has the potential to elucidate the underlying mechanisms as well as capture the effects of chemical, electrical, or ultrasound stimulation; providing insight into modulation of neural networks to treat nervous system disorders in vivo.


Subject(s)
Induced Pluripotent Stem Cells , Microelectrodes , Neurons , Humans , Neurons/physiology , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/cytology , Action Potentials/physiology , Cells, Cultured , Cerebral Cortex/physiology , Cerebral Cortex/cytology , Astrocytes/physiology , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Bicuculline/pharmacology , Nerve Net/physiology
3.
Cells ; 12(20)2023 10 15.
Article in English | MEDLINE | ID: mdl-37887298

ABSTRACT

The effects of hypothermia on neonatal encephalopathy may vary topographically and cytopathologically in the neocortex with manifestations potentially influenced by seizures that alter the severity, distribution, and type of neuropathology. We developed a neonatal piglet survival model of hypoxic-ischemic (HI) encephalopathy and hypothermia (HT) with continuous electroencephalography (cEEG) for seizures. Neonatal male piglets received HI-normothermia (NT), HI-HT, sham-NT, or sham-HT treatments. Randomized unmedicated sham and HI piglets underwent cEEG during recovery. Survival was 2-7 days. Normal and pathological neurons were counted in different neocortical areas, identified by cytoarchitecture and connectomics, using hematoxylin and eosin staining and immunohistochemistry for RNA-binding FOX-1 homolog 3 (Rbfox3/NeuN). Seizure burden was determined. HI-NT piglets had a reduced normal/total neuron ratio and increased ischemic-necrotic/total neuron ratio relative to sham-NT and sham-HT piglets with differing severities in the anterior and posterior motor, somatosensory, and frontal cortices. Neocortical neuropathology was attenuated by HT. HT protection was prominent in layer III of the inferior parietal cortex. Rbfox3 immunoreactivity distinguished cortical neurons as: Rbfox3-positive/normal, Rbfox3-positive/ischemic-necrotic, and Rbfox3-depleted. HI piglets had an increased Rbfox3-depleted/total neuron ratio in layers II and III compared to sham-NT piglets. Neuronal Rbfox3 depletion was partly rescued by HT. Seizure burdens in HI-NT and HI-HT piglets were similar. We conclude that the neonatal HI piglet neocortex has: (1) suprasylvian vulnerability to HI and seizures; (2) a limited neuronal cytopathological repertoire in functionally different regions that engages protective mechanisms with HT; (3) higher seizure burden, insensitive to HT, that is correlated with more panlaminar ischemic-necrotic neurons in the somatosensory cortex; and (4) pathological RNA splicing protein nuclear depletion that is sensitive to HT. This work demonstrates that HT protection of the neocortex in neonatal HI is topographic and laminar, seizure unmitigating, and restores neuronal depletion of RNA splicing factor.


Subject(s)
Hypothermia , Hypoxia-Ischemia, Brain , Neocortex , Animals , Male , Swine , Hypothermia/pathology , Animals, Newborn , Neocortex/metabolism , Hypoxia/pathology , Neurons/metabolism , Ischemia/pathology , Hypoxia-Ischemia, Brain/pathology , Seizures
4.
J Child Neurol ; 38(10-12): 581-589, 2023 10.
Article in English | MEDLINE | ID: mdl-37624689

ABSTRACT

BACKGROUND / OBJECTIVE: Seizures are a complication for pediatric patients requiring extracorporeal membrane oxygenation (ECMO). There are no standardized guidelines regarding continuous electroencephalography (EEG) monitoring to detect seizures in these patients, and the impact of protocolized monitoring has not been evaluated. Here we examined the effects of continuous EEG protocol implementation in our pediatric ECMO population. METHODS: Retrospective chart reviews were conducted on 57 patients who underwent extracorporeal membrane oxygenation and concurrent continuous EEG out of 165 patients supported on extracorporeal membrane oxygenation. Timing of continuous EEG initiation and seizures detected by continuous EEG was determined for 5 years prior to and 15 months after protocol implementation. RESULTS: Protocol implementation was associated with increased ECMO-supported patients who were concurrently monitored by continuous EEG. Time from ECMO cannulation to continuous EEG initiation was shorter (median 7 hours after versus 16.2 hours before; P < .001). Patients who had ongoing seizures at the start of continuous EEG recording decreased from 64% preprotocol to 0% postprotocol (P < .001), and there was an associated earlier time to break in status epilepticus postprotocol. Seizures were detected past 48 hours after cannulation in 50% of patients in the postprotocol group. CONCLUSIONS: Protocol implementation resulted in earlier continuous EEG initiation and more EEGs initiated before seizure onset with evidence of altered seizure dynamics. Although current recommendations suggest that continuous EEG duration of 24-48 hours results in seizure detection for >90% of critically ill adults, longer monitoring may be needed to reliably detect seizures in children supported with ECMO, particularly if monitoring is initiated earlier in the post-cannulation period.


Subject(s)
Extracorporeal Membrane Oxygenation , Status Epilepticus , Adult , Child , Humans , Retrospective Studies , Seizures/diagnosis , Seizures/therapy , Seizures/epidemiology , Electroencephalography/methods , Status Epilepticus/etiology
5.
bioRxiv ; 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37502955

ABSTRACT

Human induced pluripotent stem cell (hiPSC) - derived neurons offer the possibility of studying human-specific neuronal behaviors in physiologic and pathologic states in vitro . However, it is unclear whether these cultured neurons can achieve the fundamental network behaviors that are required to process information in the human brain. Investigating neuronal oscillations and their interactions, as occurs in cross-frequency coupling (CFC), is potentially a relevant approach. Microelectrode array culture plates provide a controlled framework to study populations of hiPSC-derived cortical neurons (hiPSC-CNs) and their electrical activity. Here, we examined whether networks of two-dimensional cultured hiPSC-CNs recapitulate the CFC that is present in networks in vivo . We analyzed the electrical activity recorded from hiPSC-CNs grown in culture with hiPSC-derived astrocytes. We employed the modulation index method for detecting phase-amplitude coupling (PAC) and used an offline spike sorting method to analyze the contribution of a single neuron's spiking activities to network behavior. Our analysis demonstrates that the degree of PAC is specific to network structure and is modulated by external stimulation, such as bicuculine administration. Additionally, the shift in PAC is not driven by a single neuron's properties but by network-level interactions. CFC analysis in the form of PAC explores communication and integration between groups of nearby neurons and dynamical changes across the entire network. In vitro , it has the potential to capture the effects of chemical agents and electrical or ultrasound stimulation on these interactions and may provide valuable information for the modulation of neural networks to treat nervous system disorders in vivo . Significance: Phase amplitude coupling (PAC) analysis demonstrates that the complex interactions that occur between neurons and network oscillations in the human brain, in vivo , are present in 2-dimensional human cultures. This coupling is implicated in normal cognitive function as well as disease states. Its presence in vitro suggests that PAC is a fundamental property of neural networks. These findings offer the possibility of a model to understand the mechanisms and of PAC more completely and ultimately allow us to understand how it can be modulated in vivo to treat neurologic disease.

6.
J Vis Exp ; (174)2021 08 26.
Article in English | MEDLINE | ID: mdl-34515684

ABSTRACT

Human pluripotent stem cell-derived astrocytes (hiPSC-A) and neurons (hiPSC-N) provide a powerful tool for modeling Amyotrophic Lateral Sclerosis (ALS) pathophysiology in vitro. Multi-electrode array (MEA) recordings are a means to record electrical field potentials from large populations of neurons and analyze network activity over time. It was previously demonstrated that the presence of hiPSC-A that are differentiated using techniques to promote a spinal cord astrocyte phenotype improved maturation and electrophysiological activity of regionally specific spinal cord hiPSC-motor neurons (MN) when compared to those cultured without hiPSC-A or in the presence of rodent astrocytes. Described here is a method to co-culture spinal cord hiPSC-A with hiPSC-MN and record electrophysiological activity using MEA recordings. While the differentiation protocols described here are particular to astrocytes and neurons that are regionally specific to the spinal cord, the co-culturing platform can be applied to astrocytes and neurons differentiated with techniques specific to other fates, including cortical hiPSC-A and hiPSC-N. These protocols aim to provide an electrophysiological assay to inform about glia-neuron interactions and provide a platform for testing drugs with therapeutic potential in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Astrocytes , Cell Differentiation , Cells, Cultured , Humans , Motor Neurons
7.
Children (Basel) ; 6(2)2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30764523

ABSTRACT

Mechanisms underlying seizures and epilepsy have traditionally been considered to involve abnormalities of ion channels or synaptic function. Those considerations gave rise to the excitation/inhibition (E/I) imbalance theory, whereby increased excitation, decreased inhibition, or both favor a hyperexcitable state and an increased propensity for seizure generation and epileptogenesis. Several recent findings warrant reconsideration and expansion of the E/I hypothesis: novel genetic mutations have been identified that do not overtly affect E/I balance; neurotransmitters may exert paradoxical effects, especially during development; anti-seizure medications do not necessarily work by decreasing excitation or increasing inhibition; and metabolic factors participate in the regulation of neuronal and network excitability. These novel conceptual and experimental advances mandate expansion of the E/I paradigm, with the expectation that new and exciting therapies will emerge from this broadened understanding of how seizures and epilepsy arise and progress.

8.
Mol Cell Neurosci ; 73: 52-62, 2016 06.
Article in English | MEDLINE | ID: mdl-26655799

ABSTRACT

Schizophrenia (SCZ) and autism spectrum disorder (ASD) are genetically and phenotypically complex disorders of neural development. Human genetic studies, as well as studies examining structural changes at the cellular level, have converged on glutamatergic synapse formation, function, and maintenance as common pathophysiologic substrates involved in both disorders. Synapses as basic functional units of the brain are continuously modified by experience throughout life, therefore they are particularly attractive candidates for targeted therapy. Until recently we lacked a system to evaluate dynamic changes that lead to synaptic abnormalities. With the development of techniques to generate induced pluripotent stem cells (iPSCs) from patients, we are now able to study neuronal and synaptic development in cells from individual patients in the context of genetic changes conferring disease susceptibility. In this review, we discuss recent studies focusing on neural cells differentiated from SCZ and ASD patient iPSCs. These studies support a central role for glutamatergic synapse formation and function in both disorders and demonstrate that iPSC derived neurons offer a potential system for further evaluation of processes leading to synaptic dysregulation and for the design and screening of future therapies.


Subject(s)
Autistic Disorder/pathology , Induced Pluripotent Stem Cells/cytology , Neurogenesis , Neurons/cytology , Schizophrenia/pathology , Synapses/pathology , Autistic Disorder/genetics , Autistic Disorder/metabolism , Cell Culture Techniques/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Neurons/metabolism , Neurons/pathology , Schizophrenia/genetics , Schizophrenia/metabolism , Synapses/metabolism
9.
Am J Physiol Cell Physiol ; 302(3): C527-38, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22049206

ABSTRACT

"Mitotic cell rounding" describes the rounding of mammalian cells before dividing into two daughter cells. This shape change requires coordinated cytoskeletal contraction and changes in osmotic pressure. While considerable research has been devoted to understanding mechanisms underlying cytoskeletal contraction, little is known about how osmotic gradients are involved in cell division. Here we describe cytoplasmic condensation preceding cell division, termed "premitotic condensation" (PMC), which involves cells extruding osmotically active Cl(-) via ClC-3, a voltage-gated channel/transporter. This leads to a decrease in cytoplasmic volume during mitotic cell rounding and cell division. Using a combination of time-lapse microscopy and biophysical measurements, we demonstrate that PMC involves the activation of ClC-3 by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in human glioma cells. Knockdown of endogenous ClC-3 protein expression eliminated CaMKII-dependent Cl(-) currents in dividing cells and impeded PMC. Thus, kinase-dependent changes in Cl(-) conductance contribute to an outward osmotic pressure in dividing cells, which facilitates cytoplasmic condensation preceding cell division.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Chloride Channels/metabolism , Mitosis , Cell Cycle , Cell Division , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation , Cell Shape , Chloride Channels/genetics , Chlorides , Cytoskeleton/metabolism , Gene Knockdown Techniques , Glioma , Humans , Osmotic Pressure , Patch-Clamp Techniques
10.
J Neurophysiol ; 101(2): 750-7, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19036868

ABSTRACT

During brain development, progenitor cells migrate over long distances through narrow and tortuous extracellular spaces posing significant demands on the cell's ability to alter cell volume. This phenotype is recapitulated in primary brain tumors. We demonstrate here that volume changes occurring spontaneously in these cells are mediated by the flux of Cl- along with obligated water across the cell membrane. To do so, glioma cells accumulate Cl- to approximately 100 mM, a concentration threefold greater than predicted by the Nernst equation. Shunting this gradient through the sustained opening of exogenously expressed GABA-gated Cl- channels caused a 33% decrease in cell volume and impaired the ability of cells to migrate in a spatially constrained environment. Further, dividing cells condense their cytoplasm prior to mitosis, a phenomenon which is associated with the release of intracellular Cl- as indicated by a 40-mM decrease in [Cl-]i. These findings provide a new framework for considering the role of intracellular Cl- in glioma cells. Here, Cl- serves as an important osmotically active regulator of cell volume being the energetic driving force for volume changes required by immature cells in cell migration and proliferation. This mechanism that was studied in CNS malignancies may be shared with other immature cells in the brain as well.


Subject(s)
Cell Movement/physiology , Cell Proliferation , Cell Size , Chlorides/metabolism , Acetates/pharmacology , Analysis of Variance , Bumetanide/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Size/drug effects , Electric Stimulation/methods , GABA Antagonists/pharmacology , Glioblastoma , Green Fluorescent Proteins/genetics , Humans , Imaging, Three-Dimensional/methods , Indenes/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Patch-Clamp Techniques/methods , Picrotoxin/pharmacology , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Transfection , gamma-Aminobutyric Acid/pharmacology
11.
J Neurosci ; 28(37): 9205-17, 2008 Sep 10.
Article in English | MEDLINE | ID: mdl-18784301

ABSTRACT

Although most brain cells are postmitotic, small populations of progenitor or stem cells can divide throughout life. These cells are believed to be the most likely source for primary brain malignancies including gliomas. Such tumors share many common features with nonmalignant glial cells but, because of their insidious growth, form cancers that are typically incurable. In studying the growth regulation of these tumors, we recently discovered that glioma cell division is preceded by a cytoplasmic condensation that we called premitotic condensation (PMC). PMC represents an obligatory step in cell replication and is linked to chromatin condensation. If perturbed, the time required to complete a division is significantly prolonged. We now show that PMC is a feature shared more commonly among normal and malignant cells and that the reduction of cell volume is accomplished by Cl(-) efflux through ClC3 Cl(-) channels. Patch-clamp electrophysiology demonstrated a significant upregulation of chloride currents at M phase of the cell cycle. Colocalization studies and coimmunoprecipitation experiments showed the channel on the plasma membrane and at the mitotic spindle. To demonstrate a mechanistic role for ClC3 in PMC, we knocked down ClC3 expression using short hairpin RNA constructs. This resulted in a significant reduction of chloride currents at M phase that was associated with a decrease in the rate of PMC and a similar impairment of DNA condensation. These data suggest that PMC is an integral part of cell division and is dependent on ClC3 channel function.


Subject(s)
Cell Cycle/physiology , Chloride Channels/physiology , Glioma/physiopathology , Neuroglia/physiology , Analysis of Variance , Angiogenesis Inhibitors/pharmacology , Animals , Animals, Newborn , Cell Division/physiology , Cell Membrane/metabolism , Cell Size , Cells, Cultured , Chlorides/metabolism , Computer Simulation , DNA/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Glioma/pathology , Humans , Membrane Potentials/drug effects , Membrane Potentials/physiology , Models, Biological , Neuroglia/cytology , Nitrobenzoates/pharmacology , Patch-Clamp Techniques/methods , Rats , Time Factors , Tubulin/metabolism
12.
J Cell Sci ; 121(Pt 3): 290-7, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18198188

ABSTRACT

Programmed cell death (apoptosis) is important in tissue maintenance. Hallmarks of apoptosis include caspase activation, DNA fragmentation and an overall reduction in cell volume. Whether this apoptotic volume decrease (AVD) is a mere response to initiators of apoptosis or whether it is functionally significant is not clear. In this study, we sought to answer this question using human malignant glioma cells as a model system. In vivo, high grade gliomas demonstrate an increased percentage of apoptotic cells as well as upregulation of death ligand receptors. By dynamically monitoring cell volume, we show that the induction of apoptosis, via activation of either the intrinsic or extrinsic pathways with staurosporine or TRAIL, respectively, resulted in a rapid AVD in D54-MG human glioma cells. This decrease in cell volume could be prevented by inhibiting the efflux of Cl(-) through channels. Such suppression of AVD also reduced the activation of caspases 3, 8 and 9 and suppressed DNA fragmentation. Importantly, experimental manipulations that reduce the cell volume to 70% of the original volume for periods of at least 3 hours were sufficient to initiate apoptosis even in the absence of death ligands. Hence, this data suggests that cell condensation is both necessary and sufficient for the induction of apoptosis.


Subject(s)
Apoptosis/physiology , Cytoplasm/pathology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Apoptosis/drug effects , Caspases/metabolism , Cell Death/drug effects , Cell Death/physiology , Cell Line, Tumor , Cell Size/drug effects , Chlorides/metabolism , Cytoplasm/drug effects , DNA Fragmentation/drug effects , Glioma/metabolism , Glioma/pathology , Humans , Ion Transport/drug effects , Models, Biological , Recombinant Proteins/pharmacology , Staurosporine/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology
13.
Cell Cycle ; 6(13): 1613-20, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17581282

ABSTRACT

Cell growth and osmotic volume regulation are undoubtedly linked to the progression of the cell cycle as with each division, a newly generated cell must compensate for loss of half of its volume to its sister cell. The extent to which size influences cell cycle decisions, however, is controversial in mammalian cells. Further, a mechanism by which cells can monitor and therefore regulate their size has not been fully elucidated. Despite an ongoing debate, there have been few studies which directly address the question in single cell real-time experiments. In this study we used fluorescent time-lapse imaging to quantitatively assess volume in individual spontaneously dividing cells throughout the cell cycle. Together with biophysical studies, these establish that the efflux of salt and water brings about a condensation of cytoplasmic volume as glioma cells progress through mitosis. As cells undergo this pre-mitotic condensation (PMC) they approach a preferred cell volume preceding each division. This is functionally linked to chromatin condensation, suggesting that PMC plays an integral role in mitosis.


Subject(s)
Cell Size , Cytokinesis/physiology , Cytoplasm/physiology , Mitosis/physiology , Cell Division , Cell Membrane/physiology , Computer Simulation , Humans , Models, Biological , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...